Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 140: 213068, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939955

RESUMO

Hydroxyapatite is a commonly researched biomaterial for bone regeneration applications. To augment performance, hydroxyapatite can be substituted with functional ions to promote repair. Here, co-substituted lithium ion (Li+) and carbonate ion hydroxyapatite compositions were synthesised by an aqueous precipitation method. The co-substitution of Li+ and CO32- is a novel approach that accounts for charge balance, which has been ignored in the synthesis of Li doped calcium phosphates to date. Three compositions were synthesised: Li+-free (Li 0), low Li+ (Li 0.25), and high Li+ (Li 1). Synthesised samples were sintered as microporous discs (70-75 % theoretical sintered density) prior to being ground and fractionated to produce granules and powders, which were then characterised and evaluated in vitro. Physical and chemical characterisation demonstrated that lithium incorporation in Li 0.25 and Li 1 samples approached design levels (0.25 and 1 mol%), containing 0.253 and 0.881 mol% Li+ ions, respectively. The maximum CO32- ion content was observed in the Li 1 sample, with ~8 wt% CO3, with the carbonate ions located on both phosphate and hydroxyl sites in the crystal structure. Measurement of dissolution products following incubation experiments indicated a Li+ burst release profile in DMEM, with incubation of 30 mg/ml sample resulting in a Li+ ion concentration of approximately 140 mM after 24 h. For all compositions evaluated, sintered discs allowed for favourable attachment and proliferation of C2C12 cells, human osteoblast (hOB) cells, and human mesenchymal stem cells (hMSCs). An increase in alkaline phosphatase (ALP) activity with Li+ doping was demonstrated in C2C12 cells and hMSCs seeded onto sintered discs, whilst the inverse was observed in hOB cells. Furthermore, an increase in ALP activity was observed in C2C12 cells and hMSCs in response to dissolution products from Li 1 samples which related to Li+ release. Complementary experiments to further investigate the findings from hOB cells confirmed an osteogenic role of the surface topography of the discs. This research has shown successful synthesis of Li+ doped carbonated hydroxyapatite which demonstrated cytocompatibility and enhanced osteogenesis in vitro, compared to Li+-free controls.


Assuntos
Durapatita , Osteogênese , Carbonatos/farmacologia , Durapatita/farmacologia , Humanos , Lítio/farmacologia , Osteoblastos
2.
Spine J ; 21(11): 1925-1937, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34033931

RESUMO

BACKGROUND CONTEXT: Synthetic bone graft substitutes are commonly used in spinal fusion surgery. Preclinical data in a model of spinal fusion to support their efficacy is an important component in clinical adoption to understand how these materials provide a biological and mechanical role in spinal fusion. PURPOSE: To evaluate the in vivo response of a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft compared to autograft alone or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft in a rabbit spinal fusion model. STUDY DESIGN: Efficacy of a nanosynthetic silicated calcium phosphate putty as an extender to autograft was studied in an experimental animal model of posterolateral spinal fusion at 6, 9, 12 and 26 weeks, compared to a predicate device. METHODS: Skeletally mature female New Zealand White rabbits (70) underwent single level bilateral posterolateral intertransverse process lumbar fusion, using either autograft alone (AG), a nanosynthetic silicated calcium phosphate putty (OstP) combined with autograft (1:1), or a collagen-biphasic calcium phosphate putty (MasP) combined with autograft (1:1). Iliac crest autograft was harvested for each group, and a total of 2 cc of graft material was implanted in the posterolateral gutters per side. Fusion success was assessed at all time points by manual palpation, radiographic assessment, micro-CT and at 12 weeks only using non-destructive range of motion testing. Tissue response, bone formation and graft resorption were assessed by decalcified paraffin histology and by histomorphometry of PMMA embedded sections. RESULTS: Assessment of fusion by manual palpation at the 12 week endpoint showed 7 out of 8 (87.5%) bilateral fusions in the OstP extender group, 4 out of 8 (50%) fusions in the MasP extender group, and 6 out of 8 (75%) fusions in the autograft alone group. Similar trends were observed with fusion scores of radiographic and micro-CT data. Histology showed a normal healing response in all groups, and increased bone formation in the OstP extender group at all timepoints compared to the MasP extender group. New bone formed directly on the OstP granule surface within the fusion mass while this was not a feature of the Collagen-Biphasic CaP material. After 26 weeks the OstP extender group exhibited 100% fusions (5 out of 5) by all measures, whereas the MasP extender group resulted in bilateral fusions in 3 out of 5 (60%), assessed by manual palpation, and fusion of only 20 and 0% by radiograph and micro-CT scoring, respectively. Histology at 26 weeks showed consistent bridging of bone between the transverse processes in the Ost P extender group, but this was not observed in the MasP extender group. CONCLUSIONS: The nanosynthetic bone graft substituted studied here, used as an extender to autograft, showed a progression to fusion between 6 and 12 weeks that was similar to that observed with autograft alone, and showed excellent fusion outcomes, bone formation and graft resorption at 26 weeks. CLINICAL SIGNIFICANCE: This preclinical study showed that the novel nanosynthetic silicated CaP putty, when combined with autograft, achieved equivalent fusion outcomes to autograft. The development of synthetic bone grafts that demonstrate efficacy in such models can eliminate the need for excessive autograft harvest and results from this preclinical study supports their effective use in spinal fusion surgery.


Assuntos
Substitutos Ósseos , Fusão Vertebral , Animais , Transplante Ósseo , Feminino , Ílio , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Coelhos
3.
Mater Sci Eng C Mater Biol Appl ; 34: 123-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24268241

RESUMO

There has been a resurgence of interest in alpha-tricalcium phosphate (α-TCP), with use in cements, polymer composites and in bi- and tri-phasic calcium phosphate bone grafts. The simplest and most established method for preparing α-TCP is the solid state reaction of monetite (CaHPO4) and calcium carbonate at high temperatures, followed by quenching. In this study, the effect of the chemical composition of reagents used in the synthesis of α-TCP on the local structure of the final product is reported and findings previously reported pertaining to the phase composition and stability are also corroborated. Chemical impurities in the monetite reagents were identified and could be correlated to the calcium phosphate products formed; magnesium impurities favoured the formation of ß-TCP, whereas single phase α-TCP was favoured when magnesium levels were low. Monetite synthesised in-house exhibited a high level of chemical purity; when this source was used to produce an α-TCP sample, the α-polymorph could be obtained by both quenching and by cooling to room temperature in the furnace at rates between 1 and 10°C/min, thereby simplifying the synthesis process. It was only when impurities were minimised that the 12 phosphorus environments in the α-TCP structure could be resolved by (31)P nuclear magnetic resonance; samples containing chemical impurity showed differing degrees of line-broadening. Reagent purity should therefore be considered a priority when synthesising/characterising the α-polymorph of TCP.


Assuntos
Fosfatos de Cálcio/química , Fosfatos de Cálcio/síntese química , Temperatura Alta , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Termogravimetria , Difração de Raios X
4.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1132-42, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827552

RESUMO

A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells. In contrast, Sr ions alone, at the concentrations released by Sr-HA (1.21-3.24 ppm), influenced neither cell proliferation nor differentiation. Thus the positive effects of Sr in Sr-HA materials are probably due to the co-action of other ions such as Ca and P.


Assuntos
Materiais Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Estrôncio/farmacologia , Fosfatase Alcalina/metabolismo , Proliferação de Células/efeitos dos fármacos , Cristalização , Durapatita/síntese química , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Osteoblastos/enzimologia , Fósforo/análise , Espectroscopia Fotoeletrônica , Pós , Espectrometria por Raios X , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
5.
J Mater Sci Mater Med ; 23(12): 2867-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053798

RESUMO

The present study is aimed at investigating the contribution of two biologically important cations, Mg(2+) and Sr(2+), when substituted into the structure of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2),HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg(2+)- and Sr(2+)-containing precursors to partially replace Ca(2+) ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg(2+)) or combined (Mg(2+) and Sr(2+)) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N(2) adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and ß-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/ß-TCP ratio.


Assuntos
Durapatita/química , Hidroxiapatitas/química , Íons , Magnésio/química , Estrôncio/química , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Cátions , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Porosidade , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Propriedades de Superfície , Temperatura , Difração de Raios X
6.
Eur Cell Mater ; 22: 344-58, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22125259

RESUMO

At sites of bone fracture, naturally-occurring electric fields (EFs) exist during healing and may guide cell migration. In this study, we investigated whether EFs could direct the migration of bone marrow mesenchymal stem cells (BM-MSCs), which are known to be key players in bone formation. Human BM-MSCs were cultured in direct current EFs of 10 to 600 mV/mm. Using time-lapse microscopy, we demonstrated that an EF directed migration of BM-MSCs mainly to the anode. Directional migration occurred at a low threshold and with a physiological EF of ~25 mV/mm. Increasing the EF enhanced the MSC migratory response. The migration speed peaked at 300 mV/mm, at a rate of 42 ±1 µm/h, around double the control (no EF) migration rate. MSCs showed sustained response to prolonged EF application in vitro up to at least 8 h. The electrotaxis of MSCs with either early (P3-P5) or late (P7-P10) passage was also investigated. Migration was passage-dependent with higher passage number showing reduced directed migration, within the range of passages examined. An EF of 200 mV/mm for 2 h did not affect cell senescence, phenotype, or osteogenic potential of MSCs, regardless of passage number within the range tested (P3-P10). Our findings indicate that EFs are a powerful cue in directing migration of human MSCs in vitro. An applied EF may be useful to control or enhance migration of MSCs during bone healing.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular , Estimulação Elétrica , Células-Tronco Mesenquimais/fisiologia , Regeneração Óssea , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Humanos , Microscopia de Vídeo , Pessoa de Meia-Idade , Osteogênese , Fenótipo , Imagem com Lapso de Tempo , Adulto Jovem
7.
Bone ; 44(5): 899-907, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19284975

RESUMO

Cortical and trabecular bone are both produced and maintained by the same cell types. At the microscopic scale they have a similar lamellar structure but at a macroscopic scale they are very different. Raman microscopy has been used to investigate compositional differences in the two bone types using bone from standard laboratory mice in physiological conditions. Clear differences were observed when complete spectra were compared by principal component analysis (PCA). Analysis of individual bands showed cortical bone to have compositional characteristics of older bone when compared with trabecular material, possibly due to the higher bone turnover traditionally reported in the trabecular compartment.


Assuntos
Osso e Ossos/química , Osso e Ossos/metabolismo , Análise Espectral Raman/métodos , Animais , Carbonatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos/metabolismo , Análise de Componente Principal
8.
J Mater Sci Mater Med ; 14(6): 511-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15348435

RESUMO

The in vitro response of primary human osteoblast-like (HOB) cells to a novel hydroxyapatite (HA) coated titanium substrate, produced by a low temperature electrochemical method, was compared to three different titanium surfaces: as-machined, Al(2)O(3)-blasted, plasma-sprayed with titanium particles. HOB cells were cultured on different surfaces for 3, 7 and 14 days at 37 degrees C. The cell morphology was assessed using scanning electron microscopy (SEM). Cell growth and proliferation were assessed by the measurement of total cellular DNA and tritiated thymidine incorporation. Measurement of alkaline phosphatase (ALP) production was used as an indicator of the phenotype of the cultured HOB cells. After three days incubation, the electrochemically coated HA surface produced the highest level of cell proliferation, and the Al(2)O(3)-blasted surface the lowest. Interestingly, as the incubation time was increased to 7 days all surfaces produced a large drop in tritiated thymidine incorporation apart from the Al(2)O(3)-blasted surface, which showed a small increase. Cells cultured on all four surfaces showed an increased expression of ALP with increased incubation time, although there was not a statistically significant difference between surfaces at each time point. Typical osteoblast morphology was observed for cells cultured on all samples. The HA coated sample showed evidence of a deposited phase after three days of incubation, which was not observed on any other surface. Cells incubated on the HA coated substrate appeared to exhibit the highest number of cell processes attaching to the surface, which was indicative of optimal cell attachment. The crystalline HA coating, produced by a low temperature route, appeared to result in a more bioactive surface on the c.p. Ti substrate than was observed for the other three different Ti surfaces.

9.
J Biomed Mater Res ; 59(4): 697-708, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11774332

RESUMO

A novel synthesis route has been developed to produce a high-purity mixed AB-type carbonate-substituted hydroxyapatite (CHA) with a carbonate content that is comparable to the type and level observed in bone mineral. This method involves the aqueous precipitation in the presence of carbonate ions in solution of a calcium phosphate apatite with a Ca/P molar ratio greater than the stoichiometric value of 1.67 for hydroxyapatite (HA). The resulting calcium-rich carbonate-apatite is sintered/heat-treated in a carbon dioxide atmosphere to produce a single-phase, crystalline carbonate-substituted hydroxyapatite. In contrast to previous methods for producing B- or AB-type carbonate-substituted hydroxyapatites, no sodium or ammonium ions, which would be present in the reaction mixture from the sodium or ammonium carbonates commonly used as a source of carbonate ions, were present in the final product. The chemical and phase compositions of the carbonate-substituted hydroxyapatite was characterized by X-ray fluorescence and X-ray diffraction, respectively, and the level and nature of the carbonate substitution were studied using C-H-N analysis and Fourier transform infrared spectroscopy, respectively. The carbonate substitution improves the densification of hydroxyapatite and reduces the sintering temperature required to achieve near-full density by approximately 200 degrees C compared to stoichiometric HA. Initial studies have shown that these carbonate-substituted hydroxyapatites have improved mechanical and biologic properties compared to stoichiometric hydroxyapatite.


Assuntos
Substitutos Ósseos/síntese química , Carbonatos/química , Hidroxiapatitas/síntese química , Substitutos Ósseos/química , Hidroxiapatitas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA