Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37372672

RESUMO

The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM's vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM's Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/prevenção & controle , Ondas de Rádio/efeitos adversos
2.
RSC Adv ; 12(49): 31878-31888, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380961

RESUMO

Mesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in nanomedicine as imaging and therapeutic carriers. Most of these studies focused on spherical particles. In contrast, mesoporous silica rods (MSR) that are more challenging to prepare have been less investigated in terms of toxicity, cellular uptake, or biodistribution. Interestingly, previous studies showed that silica rods penetrate fibrous tissues or mucus layers more efficiently than their spherical counterparts. Recently, we reported the synthesis of MSR with distinct aspect ratios and validated their use in multiple imaging modalities by loading the pores with maghemite nanocrystals and functionalizing the silica surface with green and red fluorophores. Herein, based on an initial hypothesis of high liver accumulation of the MSR and a future vision that they could be used for early diagnosis or therapy in fibrotic liver diseases; the cytotoxicity and cellular uptake of MSR were assessed in zebrafish liver (ZFL) cells and the in vivo safety and biodistribution was investigated via fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) employing zebrafish larvae and rodents. The selection of these animal models was prompted by the well-established fatty diet protocols inducing fibrotic liver in zebrafish or rodents that serve to investigate highly prevalent liver conditions such as non-alcoholic fatty liver disease (NAFLD). Our study demonstrated that magnetic MSR do not cause cytotoxicity in ZFL cells regardless of the rods' length and surface charge (for concentrations up to 50 µg ml-1, 6 h) and that MSR are taken up by the ZFL cells in large amounts despite their length of ∼1 µm. In zebrafish larvae, it was observed that they could be safely exposed to high MSR concentrations (up to 1 mg ml-1 for 96 h) and that the rods pass through the liver without causing toxicity. The high accumulation of MSR in rodents' livers at short post-injection times (20% of the administered dose) was confirmed by both FMI and MRI, highlighting the utility of the MSR for liver imaging by both techniques. Our results could open new avenues for the use of rod-shaped silica particles in the diagnosis of pathological liver conditions.

3.
ACS Appl Mater Interfaces ; 14(35): 40182-40190, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998366

RESUMO

Bread waste is a major part of food wastage which could be upcycled to produce functional materials, following the principles of the circular bioeconomy. This work shows that bread waste can be recycled and valorized to produce a composite conductive material with excellent properties for chemical sensor applications. Here, dry bread is impregnated with an aqueous solution of a silver precursor and pyrolyzed to produce a porous carbon matrix containing Ag nanoparticles with diameters ranging from 20 to 40 nm. These particles perform as catalytic redox centers for the electrochemical detection of halide ions (Cl-, Br-, and I-) and organohalide target molecules such as sucralose and trichloroacetic acid. A thorough analytical characterization is carried out to show the potential application of the developed material for the manufacturing of electrochemical sensor approaches. The material preparation is sustainable, low-cost, simple, and upscalable. These are ideal features for the large-scale manufacturing by screen-printing technologies of single-use electrochemical sensors for the rapid analysis of halogenated organic pollutants in waters.

4.
ACS Appl Nano Mater ; 5(2): 2113-2125, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35252779

RESUMO

Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 µm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 µg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.

5.
Nanoscale ; 14(6): 2337-2343, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088065

RESUMO

The metastable orthorhombic phase of Hf0.5Zr0.5O2 (HZO) can be stabilized in thin films on La0.67Sr0.33MnO3 (LSMO) buffered (001)-oriented SrTiO3 (STO) by intriguing epitaxy that results in (111)-HZO oriented growth and robust ferroelectric properties. Here, we show that the orthorhombic phase can also be epitaxially stabilized on LSMO/STO(110), presenting the same out-of-plane (111) orientation but a different distribution of the in-plane crystalline domains. The remanent polarization of HZO films with a thickness of less than 7 nm on LSMO/STO(110) is 33 µC cm-3, which corresponds to a 50% improvement over equivalent films on LSMO/STO(001). Furthermore, HZO on LSMO/STO(110) presents higher endurance, switchable polarization is still observed up to 4 × 1010 cycles, and retention of more than 10 years. These results demonstrate that tuning the epitaxial growth of ferroelectric HfO2, here using STO(110) substrates, allows the improvement of functional properties of relevance for memory applications.

6.
ACS Appl Mater Interfaces ; 12(4): 4732-4740, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31880913

RESUMO

The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for the future development of piezoelectric devices as prospective sensors with applications based on the operation in the high-frequency range. However, to date, it has not been possible to make existing quartz manufacturing methods compatible with integration on silicon and structuration by top-down lithographic techniques. Here, we report an unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz nanostructures on silicon substrates by the combination of soft-chemistry and three lithographic techniques: (i) laser interference lithography, (ii) soft nanoimprint lithography on Sr-doped SiO2 sol-gel thin films, and (iii) self-assembled SrCO3 nanoparticle reactive nanomasks. Epitaxial α-quartz nanopillars with different diameters (from 1 µm down to 50 nm) and heights (up to 2 µm) were obtained. This work demonstrates the complementarity of soft-chemistry and top-down lithographic techniques for the patterning of epitaxial quartz thin films on silicon while preserving its epitaxial crystallinity and piezoelectric properties. These results open up the opportunity to develop a cost-effective on-chip integration of nanostructured piezoelectric α-quartz MEMS with enhanced sensing properties of relevance in different fields of application.

7.
Nanoscale Adv ; 1(9): 3741-3752, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133542

RESUMO

Epitaxial films of piezoelectric α-quartz could enable the fabrication of sensors with unprecedented sensitivity for prospective applications in electronics, biology and medicine. However, the prerequisites are harnessing the crystallization of epitaxial α-quartz and tailoring suitable film microstructures for nanostructuration. Here, we bring new insights into the crystallization of epitaxial α-quartz films on silicon (100) from the devitrification of porous silica and the control of the film microstructures: we show that by increasing the quantity of devitrifying agent (Sr) it is possible to switch from an α-quartz microstructure consisting of a porous flat film to one dominated by larger, fully dense α-quartz crystals. We also found that the film thickness, relative humidity and the nature of the surfactant play an important role in the control of the microstructure and homogeneity of the films. Via a multi-layer deposition method, we have extended the maximum thickness of the α-quartz films from a few hundreds of nm to the µm range. Moreover, we found a convenient method to combine this multilayer approach with soft lithography to pattern silica films while preserving epitaxial crystallization. This improved control over crystallization and the possibility of preparing patterned films of epitaxial α-quartz on Si substrates pave the path to future developments in applications based on electromechanics, optics and optomechanics.

8.
ACS Appl Mater Interfaces ; 10(41): 35367-35373, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30249093

RESUMO

Understanding diffusion of oxygen vacancies in oxides under different external stimuli is crucial for the design of ion-based electronic devices, improvement of catalytic performance, and so forth. In this manuscript, using an external electric field produced by an atomic force microscopy tip, we obtain the room-temperature diffusion coefficient of oxygen-vacancies in thin films of SrTiO3 under compressive/tensile epitaxial strain. Tensile strain produces a substantial increase of the diffusion coefficient, facilitating the mobility of vacancies through the film. Additionally, the effect of tip bias, pulse time, and temperature on the local concentration of vacancies is investigated. These are important parameters of control in the production and stabilization of nonvolatile states in ion-based devices. Our findings show the key role played by strain for the control of oxygen vacancy migration in thin-film oxides.

9.
Chem Rec ; 18(7-8): 749-758, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29806230

RESUMO

The synthesis of organic-inorganic nanocomposites that can interact with different environmental pollutants and can be mass-produced are very promising materials for the fabrication of chemical sensor devices. Among them, metal (or metal oxide) nanoparticles doped conductive porous carbon composites can be readily applied to the production of electrochemical sensors and show enhanced sensitivity for the measurement of water pollutants, thanks to the abundant accessible and functional sites provided by the interconnected porosity and the metallic nanoparticles, respectively. In this personal account, an overview of several synthesis routes of porous carbon composites containing metallic nanoparticles is given, paying special attention to those based on sol-gel techniques. These are very powerful to synthesize hybrid porous materials that can be easily processed into powders and thin films, so that they can be implemented in electrode fabrication processes based on screen-printing and lithography techniques, respectively. We emphasize the sol-gel routes developed in our group for the synthesis of bismuth or gold nanoparticle doped porous carbon composites applied to fabricate electrochemical sensors that can be scaled down to produce miniaturized on-chip sensing devices for the sensitive detection of heavy metal pollutants in water. The trend towards the miniaturization of electrochemical sensors to be readily employed as analytical tools in environmental monitoring follow the market requirements of rapid and accurate on-site analysis, small sample consumption and waste production, as well as potential for continuous or semi-continuous in-situ determination of a wide variety of target analytes.

10.
Small ; 13(39)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809085

RESUMO

Materials that can couple electrical and mechanical properties constitute a key element of smart actuators, energy harvesters, or many sensing devices. Within this class, functional oxides display specific mesoscale responses which often result in great sensitivity to small external stimuli. Here, a novel combination of molecular beam epitaxy and a water-based chemical-solution method is used for the design of mechanically controlled multilevel device integrated on silicon. In particular, the possibility of adding extra functionalities to a ferroelectric oxide heterostructure by n-doping and nanostructuring a BaTiO3 thin film on Si(001) is explored. It is found that the ferroelectric polarization can be reversed, and resistive switching can be measured, upon a mechanical load in epitaxial BaTiO3-δ /La0.7 Sr0.3 MnO3 /SrTiO3 /Si columnar nanostructures. A flexoelectric effect is found, stemming from substantial strain gradients that can be created with moderate loads. Simultaneously, mechanical effects on the local conductivity can be used to modulate a nonvolatile resistive state of the BaTiO3-δ heterostructure. As a result, three different configurations of the system become accessible on top of the usual voltage reversal of polarization and resistive states.

11.
ACS Appl Mater Interfaces ; 8(45): 31092-31099, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27755871

RESUMO

Thin carbon films deposited on technologically relevant substrates, such as silicon wafers, can be easily implemented in miniaturized electrochemical devices and used for sensing applications. However, a major issue in most carbon films is the weak film/substrate adhesion that shortens the working device lifetime. This paper describes the facile preparation of robust thin carbon films on silicon substrates by one-pot sol-gel synthesis. The improved adherence of these carbon films is based on the incorporation of silica through the controlled synthesis of a resorcinol/formaldehyde gel modified with aminopropyltriethoxysilane. The films demonstrate excellent adhesion to the silicon substrate, good homogeneity, excellent electrical conductivity and superior electrochemical performance. Moreover, this approach opens the door to the fabrication of carbon thin-film electrodes by photolithographic techniques.

12.
Small ; 12(43): 5981-5988, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27626774

RESUMO

When using the bottom-up approach with anisotropic building-blocks, an important goal is to find simple methods to elaborate nanocomposite materials with a truly macroscopic anisotropy. Here, micrometer size colloidal mesoporous particles with a highly anisotropic rod-like shape (aspect ratio ≈ 10) have been fabricated from silica (SiO2 ) and iron oxide (Fe2 O3 ). When dispersed in a solvent, these particles can be easily oriented using a magnetic field (≈200 mT). A macroscopic orientation of the particles is achieved, with their long axis parallel to the field, due to the shape anisotropy of the magnetic component of the particles. The iron oxide nanocrystals are confined inside the porosity and they form columns in the nanochannels. Two different polymorphs of Fe2 O3 iron oxide have been stabilized, the superparamagnetic γ-phase and the rarest multiferroic ε-phase. The phase transformation between these two polymorphs occurs around 900 °C. Because growth occurs under confinement, a preferred crystallographic orientation of iron oxide is obtained, and structural relationships between the two polymorphs are revealed. These findings open completely new possibilities for the design of macroscopically oriented mesoporous nanocomposites, using such strongly anisotropic Fe2 O3 /silica particles. Moreover, in the case of the ε-phase, nanocomposites with original anisotropic magnetic properties are in view.

13.
J Vis Exp ; (106): e53543, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26710210

RESUMO

This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.


Assuntos
Quartzo/química , Silício/química , Cetrimônio , Compostos de Cetrimônio/química , Cristalização , Géis/química , Silanos/química , Dióxido de Silício/química , Soluções/química , Propriedades de Superfície , Água/química
16.
Faraday Discuss ; 179: 227-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25865697

RESUMO

Understanding the crystallization of enantiomorphically pure systems can be relevant to diverse fields such as the study of the origins of life or the purification of racemates. Here we report on polycrystalline epitaxial thin films of quartz on Si substrates displaying two distinct types of chiral habits that never coexist in the same film. We combine Atomic Force Microscopy (AFM) analysis and computer-assisted crystallographic calculations to make a detailed study of these habits of quartz. By estimating the surface energies of the observed crystallites we argue that the films are enantiomorphically pure and we briefly outline a possible mechanism to explain the habit and chiral selection in this system.


Assuntos
Nanoestruturas/química , Quartzo/química , Cristalização , Microscopia de Força Atômica , Silício/química , Propriedades de Superfície
17.
Chem Commun (Camb) ; 51(20): 4164-7, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503642

RESUMO

Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Cristalização , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Porosidade
18.
Adv Mater ; 26(27): 4645-52, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24831036

RESUMO

Multiferroic behaviour at room temperature is demonstrated in ε-Fe2 O3 . The simple composition of this new ferromagnetic ferroelectric oxide and the discovery of a robust path for its thin film growth by using suitable seed layers may boost the exploitation of ε-Fe2 O3 in novel devices.


Assuntos
Compostos Férricos/química , Temperatura , Modelos Moleculares , Conformação Molecular , Nióbio/química , Óxidos/química , Estrôncio/química , Titânio/química
19.
Microsc Microanal ; 20(3): 760-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24735528

RESUMO

In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (T c >500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

20.
ACS Nano ; 3(11): 3377-82, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19824669

RESUMO

A route to produce single crystals of epsilon-Fe(2)O(3) individually wrapped in a silica shell is presented. Formation of epsilon-Fe(2)O(3)/silica nanospheres was achieved by controlled recrystallization of maghemite particles confined in silica shells via calcination in air. Phase transition was monitored by X-ray diffraction, magnetometry, and transmission electron microscopy. Core-shell nanocomposite particles can be dispersed as a colloidal suspension in several polar liquids enlarging the processability spectrum of the material and thus facilitating the use of epsilon-Fe(2)O(3) in technological applications and its integration in devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...