Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Therapie ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458946

RESUMO

Rare diseases are chronic, serious and generally genetic conditions affecting a small number of people, and their therapeutic management is a real challenge. They represent a considerable burden for patients, caregivers and society alike. Compared with existing symptomatic treatments, gene therapies represent a promising new approach aimed at treating these diseases by replacing a defective gene, or by abolishing or reviving a gene-derived function. France is considered one of the leading countries in the research and development of drugs for rare diseases, yet the position of French public and private stakeholders in the research and development of gene therapies for rare diseases at global and European level remains unclear. To answer this question, we used the GENOTRIAL FR database developed by OrphanDev to clarify France's involvement and competitiveness in this field. The results show that France is actively involved in gene therapy clinical trials, with a dense international collaboration network and solid expertise. However, the French medical infrastructure is mainly involved in clinical research on gene therapy candidates sponsored by several foreign countries. To a lesser extent, French public and private entities are also developing their own gene therapy candidates for various rare diseases, some of which have already reached advanced clinical phases. In conclusion, a number of technical and financial challenges need to be overcome if France is to maintain its position as a European and world leader and increase its contribution to reducing the economic and social burden of rare diseases by developing revolutionary and effective new therapies.

2.
iScience ; 26(6): 106899, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37305702

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.

3.
EMBO J ; 41(9): e110466, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35307861

RESUMO

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Assuntos
Corpos Cetônicos , Neoplasias Pancreáticas , Ácido 3-Hidroxibutírico/metabolismo , Animais , Corpos Cetônicos/metabolismo , Camundongos , Oxo-Ácido-Liases , Pâncreas/metabolismo
4.
Cell Rep Med ; 1(8): 100143, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294863

RESUMO

Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.


Assuntos
Respiração Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Complexo I de Transporte de Elétrons/genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Respiração Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Fosforilação Oxidativa/efeitos dos fármacos , Células PC-3 , Neoplasias Pancreáticas/tratamento farmacológico , Fenformin/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina , Neoplasias Pancreáticas
5.
Nat Commun ; 8: 16031, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685754

RESUMO

Tissue architecture contributes to pancreatic ductal adenocarcinoma (PDAC) phenotypes. Cancer cells within PDAC form gland-like structures embedded in a collagen-rich meshwork where nutrients and oxygen are scarce. Altered metabolism is needed for tumour cells to survive in this environment, but the metabolic modifications that allow PDAC cells to endure these conditions are incompletely understood. Here we demonstrate that collagen serves as a proline reservoir for PDAC cells to use as a nutrient source when other fuels are limited. We show PDAC cells are able to take up collagen fragments, which can promote PDAC cell survival under nutrient limited conditions, and that collagen-derived proline contributes to PDAC cell metabolism. Finally, we show that proline oxidase (PRODH1) is required for PDAC cell proliferation in vitro and in vivo. Collectively, our results indicate that PDAC extracellular matrix represents a nutrient reservoir for tumour cells highlighting the metabolic flexibility of this cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Colágeno/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Prolina Oxidase/genética , Prolina/metabolismo , Animais , Transporte Biológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolina Oxidase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...