Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(7): 835-844, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285061

RESUMO

Cigarette smoking is the most important avoidable cardiovascular risk factor. It causes endothelial dysfunction and atherosclerosis and increases the risk of its severe clinical complications like coronary artery disease, myocardial infarction, stroke, and peripheral artery disease. Several next-generation tobacco and nicotine products have been developed to decrease some of the deleterious effects of regular tobacco smoking. This review article summarizes recent findings about the impact of cigarette smoking and next-generation tobacco and nicotine products on endothelial dysfunction. Both cigarette smoking and next-generation tobacco products lead to impaired endothelial function. Molecular mechanisms of endothelial dysfunction like oxidative stress, reduced nitric oxide availability, inflammation, increased monocyte adhesion, and cytotoxic effects of cigarette smoke and next-generation tobacco and nicotine products are highlighted. The potential impact of short- and long-term exposure to next-generation tobacco and nicotine products on the development of endothelial dysfunction and its clinical implications for cardiovascular diseases are discussed.


Assuntos
Aterosclerose , Fumar Cigarros , Nicotina/efeitos adversos , Endotélio Vascular
2.
Pflugers Arch ; 475(7): 823-833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37081240

RESUMO

Monocytes exhibiting a pro-inflammatory phenotype play a key role in adhesion and development of atherosclerotic plaques. As an alternative to smoking, next-generation tobacco and nicotine products (NGP) are now widely used. However, little is known about their pro-inflammatory effects on monocytes. We investigated cell viability, anti-oxidant and pro-inflammatory gene and protein expression in THP-1 monocytes after exposure to aqueous smoke extracts (AqE) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F) and pure nicotine (nic). Treatment with 3R4F reduced cell viability in a dose-dependent manner, whereas exposure to alternative smoking products showed no difference to control. At the highest non-lethal dose of 3R4F (20%), the following notable mRNA expression changes were observed for 3R4F, HTP, and e-cig respectively, relative to control; HMOX1 (6-fold, < 2-fold, < 2-fold), NQO1 (3.5-fold, < 2-fold, < 2-fold), CCL2 (4-fold, 3.5-fold, 2.5-fold), IL1B (4-fold, 3-fold, < 2-fold), IL8 (5-fold, 2-fold, 2-fold), TNF (2-fold, 2-fold, < 2-fold) and ICAM1 was below the 2-fold threshold for all products. With respect to protein expression, IL1B (3-fold, < 2-fold, < 2-fold) and IL8 (3.5-fold, 2-fold, 2-fold) were elevated over the 2-fold threshold, whereas CCL2, TNF, and ICAM1 were below 2-fold expression for all products. At higher doses, greater inductions were observed with all extracts; however, NGP responses were typically lower than 3R4F. In conclusion, anti-oxidative and pro-inflammatory processes were activated by all products. NGPs overall showed lower responses relative to controls than THP-1 cells exposed to 3R4F AqE.


Assuntos
Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Nicotina/farmacologia , Fumar Cigarros/efeitos adversos , Monócitos , Interleucina-8 , Biomarcadores
3.
Redox Biol ; 47: 102150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601427

RESUMO

Tobacco smoking and hemodynamic forces are key stimuli for the development of endothelial dysfunction. As an alternative to smoking, next generation tobacco and nicotine products (NGP) are now widely used. However, little is known about their potential pro-inflammatory and atherogenic effects on the endothelium. In this study, we analyzed key parameters of endothelial function after exposure to aqueous smoke extracts (AqE) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F) and pure nicotine. All experiments were performed under atheroprotective high laminar or atherogenic low flow with primary human endothelial cells. Treatment with 3R4F, but not alternative smoking products, reduced endothelial cell viability and wound healing capability via the PI3K/AKT/eNOS(NOS3) pathway. Laminar flow delayed detrimental effects on cell viability by 3R4F treatment. 3R4F stimulation led to activation of NRF2 antioxidant defense system at nicotine concentrations ≥0.56 µg/ml and increased expression of its target genes HMOX1 and NQO1. Treatment with HTP revealed an induction of HMOX1 and NQO1 at dosages with ≥1.68 µg/ml nicotine, whereas e-cig and nicotine exposure had no impact. Analyses of pro-inflammatory genes revealed an increased ICAM1 expression under 3R4F treatment. 3R4F reduced VCAM1 expression in a dose-dependent manner; HTP treatment had similar but milder effects; e-cig and nicotine treatment had no impact. SELE expression was induced by 3R4F under static conditions. High laminar flow prevented this upregulation. Stimulation with laminar flow led to downregulation of CCL2 (MCP-1). From this downregulated level, only 3R4F increased CCL2 expression at higher concentrations. Finally, under static conditions, all components increased adhesion of monocytes to endothelial cells. Interestingly, only stimulation with 3R4F revealed increased monocyte adhesion under atherosclerosis-prone low flow. In conclusion, all product categories activated anti-oxidative or pro-inflammatory patterns. NGP responses were typically lower than in 3R4F exposed cells. Also, 3R4F stimulation led to an impaired endothelial wound healing and induced a pro-inflammatory phenotype compared to NGP treatment.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Células Endoteliais , Endotélio Vascular , Humanos , Nicotina , Fosfatidilinositol 3-Quinases , Fumaça , Fumar/efeitos adversos , Nicotiana
4.
J Am Heart Assoc ; 10(20): e022747, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34622673

RESUMO

Background Rupture of abdominal aortic aneurysm (rAAA) is associated with high case fatality rates, and risk of rupture increases with the AAA diameter. Heme oxygenase-1 (gene HMOX1, protein HO-1) is a stress-induced protein and induction has protective effects in the vessel wall. HMOX1-/- mice are more susceptible to angiotensin II-induced AAA formation, but the regulation in human nonruptured and ruptured AAA is only poorly understood. Our hypothesis proposed that HO-1 is reduced in AAA and lowering is inversely associated with the AAA diameter. Methods and Results AAA walls from patients undergoing elective open repair (eAAA) or surgery because of rupture (rAAA) were analyzed for aortic HMOX1/HO-1 expression by quantitative real-time polymerase chain reaction and Western blot. Aortas from patients with aortic occlusive disease served as controls. HMOX1/HO-1 expression was 1.1- to 7.6-fold upregulated in eAAA and rAAA. HO-1 expression was 3-fold higher in eAAA specimen with a diameter >84.4 mm, whereas HO-1 was not different in rAAA. Other variables that are known for associations with AAA and HO-1 induction were tested. In eAAA, HO-1 expression was negatively correlated with aortic collagen content and oxidative stress parameters H2O2 release, oxidized proteins, and thiobarbituric acid reactive substances. Serum HO-1 concentrations were analyzed in patients with eAAA, and maximum values were found in an aortic diameter of 55 to 70 mm with no further increase >70 mm, compared with <55 mm. Conclusions Aortic HO-1 expression was increased in eAAA and rAAA. HO-1 increased with the severity of disease but was additionally connected to less oxidative stress and vasoprotective mechanisms.


Assuntos
Aneurisma da Aorta Abdominal , Heme Oxigenase-1 , Animais , Aneurisma da Aorta Abdominal/genética , Heme Oxigenase-1/genética , Humanos , Camundongos , Índice de Gravidade de Doença
5.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205118

RESUMO

During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE-cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.


Assuntos
Antígenos CD/genética , Neoplasias da Mama/genética , Caderinas/genética , Adesão Celular/genética , Endotélio Vascular/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Imagem Molecular/métodos , Metástase Neoplásica
6.
Redox Biol ; 12: 776-786, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28432984

RESUMO

Tobacco smoking and hemodynamic forces are key stimuli in the development of endothelial dysfunction and atherosclerosis. High laminar flow has an atheroprotective effect on the endothelium and leads to a reduced response of endothelial cells to cardiovascular risk factors compared to regions with disturbed or low laminar flow. We hypothesize that the atheroprotective effect of high laminar flow could delay the development of endothelial dysfunction caused by cigarette smoking. Primary human endothelial cells were stimulated with increasing dosages of aqueous cigarette smoke extract (CSEaq). CSEaq reduced cell viability in a dose-dependent manner. The main mediator of cellular adaption to oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2) and its target genes heme oxygenase (decycling) 1 (HMOX1) or NAD(P)H quinone dehydrogenase 1 (NQO1) were strongly increased by CSEaq in a dose-dependent manner. High laminar flow induced elongation of endothelial cells in the direction of flow, activated the AKT/eNOS pathway, increased eNOS expression, phosphorylation and NO release. These increases were inhibited by CSEaq. Pro-inflammatory adhesion molecules intercellular adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), selectin E (SELE) and chemokine (C-C motif) ligand 2 (CCL2/MCP-1) were increased by CSEaq. Low laminar flow induced VCAM1 and SELE compared to high laminar flow. High laminar flow improved endothelial wound healing. This protective effect was inhibited by CSEaq in a dose-dependent manner through the AKT/eNOS pathway. Low as well as high laminar flow decreased adhesion of monocytes to endothelial cells. Whereas, monocyte adhesion was increased by CSEaq under low laminar flow, this was not evident under high laminar flow. This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The identified molecular mechanisms might be useful for development of alternative therapy concepts.


Assuntos
Aterosclerose/metabolismo , Endotélio Vascular/citologia , Redes Reguladoras de Genes/efeitos dos fármacos , Fumaça/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fluxo Sanguíneo Regional , Nicotiana/efeitos adversos
7.
J Mol Cell Cardiol ; 77: 125-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451169

RESUMO

The ligand ephrin A1 is more often discussed to play a role in the development of the atherosclerotic plaque and in this context especially in the monocyte adhesion to endothelial cells. As tumor necrosis factor-α (TNF-α) is known to induce monocyte adhesion to endothelium and ephrin A1 expression, the present study focuses on the involvement of ephrin A1 in TNF-α-mediated monocyte adhesion. The analysis of different members of the Eph/ephrin system in TNF-α-treated human umbilical vein endothelial cells (HUVEC) revealed that especially ephrinA1 was found to be highly regulated by TNF-α compared to other members of the Eph family. This effect is also present in arterial endothelial cells from the umbilical artery and from the coronary artery. This regulation is dependent on NFκB-activation as shown by the expression of a constitutive-active IκB-mutant. By using siRNA-mediated silencing and adenoviral overexpression of ephrinA1 in HUVEC, the involvement of ephrinA1 in the TNF-α triggered monocyte adhesion to endothelial cells could be demonstrated. In addition, these results could be verified by quantitative adhesion measurement using atomic force microscopy-based single-cell force spectroscopy and under flow conditions. Furthermore, this effect is mediated via the EphA4 receptor. EphrinA1 does not influence the mRNA or protein expression of the adhesion receptors VCAM-1 and ICAM-1 in endothelial cells. However, the surface presentation of these adhesion receptors is modulated in an ephrinA1-dependent manner. In conclusion, these data demonstrate that ephrinA1 plays an important role in the TNF-α-mediated adhesion of monocytes to endothelial cells, which might be of great importance in the context of atherosclerosis.


Assuntos
Efrina-A1/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Monócitos/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Adesão Celular , Linhagem Celular , Endotélio Vascular/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Cell ; 150(2): 317-26, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22817894

RESUMO

In eukaryotes, DNA is packaged into chromatin by canonical histone proteins. The specialized histone H3 variant CENP-A provides an epigenetic and structural basis for chromosome segregation by replacing H3 at centromeres. Unlike exclusively octameric canonical H3 nucleosomes, CENP-A nucleosomes have been shown to exist as octamers, hexamers, and tetramers. An intriguing possibility reconciling these observations is that CENP-A nucleosomes cycle between octamers and tetramers in vivo. We tested this hypothesis by tracking CENP-A nucleosomal components, structure, chromatin folding, and covalent modifications across the human cell cycle. We report that CENP-A nucleosomes alter from tetramers to octamers before replication and revert to tetramers after replication. These structural transitions are accompanied by reversible chaperone binding, chromatin fiber folding changes, and previously undescribed modifications within the histone fold domains of CENP-A and H4. Our results reveal a cyclical nature to CENP-A nucleosome structure and have implications for the maintenance of epigenetic memory after centromere replication.


Assuntos
Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Autoantígenos/química , Ciclo Celular , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/química , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA