Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343576

RESUMO

All ecosystems face ecological challenges in this century. Therefore, it is becoming increasingly important to understand the ecology and degree of local adaptation of functionally important Arctic-alpine biomes by looking at the most diverse taxon of metazoans: the Arthropoda. This is the first study to utilize metabarcoding in the Alpine tundra, providing insights into the effects of micro-environmental parameters on alpha- and beta-diversity of arthropods in such unique environments. To characterize arthropod diversity, pitfall traps were set at three middle-alpine sampling sites in the Scandinavian mountain range in Norway during the snow-free season in 2015. A metabarcoding approach was then used to determine the small-scale biodiversity patterns of arthropods in the Alpine tundra. All DNA was extracted directly from the preservative EtOH from 27 pitfall traps. In order to identify the controlling environmental conditions, all sampling locations were equipped with automatic data loggers for permanent measurement of the microenvironmental conditions. The variables measured were: air temperature [°C] at 15 cm height, soil temperature [°C] at 15 cm depth, and soil moisture [vol.%] at 15 cm depth. A total of 233 Arthropoda OTUs were identified. The number of unique OTUs found per sampling location (ridge, south-facing slope, and depression) was generally higher than the OTUs shared between the sampling locations, demonstrating that niche features greatly impact arthropod community structure. Our findings emphasize the fine-scale heterogeneity of arctic-alpine ecosystems and provide evidence for trait-based and niche-driven adaptation. The spatial and temporal differences in arthropod diversity were best explained by soil moisture and soil temperature at the respective locations. Furthermore, our results show that arthropod diversity is underestimated in alpine-tundra ecosystems using classical approaches and highlight the importance of integrating long-term functional environmental data and modern taxonomic techniques into biodiversity research to expand our ecological understanding of fine- and meso-scale biogeographical patterns.

2.
Biodivers Data J ; 11: e111146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312339

RESUMO

In this study, we aim to uncover diet preferences for the insectivorous bat Nyctalusleisleri (Leisler's bat, the lesser noctule) and to provide recommendations for conservation of the species, based on the analysis of prey source habitats. Using a novel guano trap, we sampled bat faeces at selected roosts in a forest in Germany and tested two mitochondrial markers (COI and 16S) and three primer pairs for the metabarcoding of bat faecal pellets. We found a total of 17 arthropod prey orders comprising 358 species in N.leisleri guano. The most diverse orders were Lepidoptera (126 species), Diptera (86 species) and Coleoptera (48 species), followed by Hemiptera (28 species), Trichoptera (16 species), Neuroptera (15 species) and Ephemeroptera (10 species), with Lepidoptera species dominating in spring and Diptera in summer. Based on the ecological requirements of the most abundant arthropod species found in the bat guano, we propose some recommendations for the conservation of N.leisleri that are relevant for other insectivorous bat species.

3.
Mol Ecol Resour ; 20(5): 1333-1345, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32462738

RESUMO

Environmental DNA studies targeting multiple taxa using metabarcoding provide remarkable insights into levels of species diversity in any habitat. The main drawbacks are the presence of primer bias and difficulty in identifying rare species. We tested a DNA sequence-capture method in parallel with the metabarcoding approach to reveal possible advantages of one method over the other. Both approaches were performed using the same eDNA samples and the same 18S and COI regions, followed by high throughput sequencing. Metabarcoded eDNA libraries were PCR amplified with one primer pair from 18S and COI genes. DNA sequence-capture libraries were enriched with 3,639 baits targeting the same gene regions. We tested amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) in silico approaches for both markers and methods, using for this purpose the metabarcoding data set. ASVs methods uncovered more species for the COI gene, whereas the opposite occurred for the 18S gene, suggesting that clustering reads into OTUs could bias diversity richness especially using 18S with relaxed thresholds. Additionally, metabarcoding and DNA sequence-capture recovered 80%-90% of the control sample species. DNA sequence-capture was 8x more expensive, nonetheless it identified 1.5x more species for COI and 13x more genera for 18S than metabarcoding. Both approaches offer reliable results, sharing ca. 40% species and 72% families and retrieve more taxa when nuclear and mitochondrial markers are combined. eDNA metabarcoding is quite well established and low-cost, whereas DNA-sequence capture for biodiversity assessment is still in its infancy, is more time-consuming but provides more taxonomic assignments.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental , Genes Mitocondriais , RNA Ribossômico 18S/genética , Sequência de Bases , Ecossistema
4.
BMC Ecol ; 19(1): 27, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262299

RESUMO

BACKGROUND: Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning. This is particularly true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. Compared to other latitudes, Polar sediment habitats also experience additional environmental drivers of strong seasonality and intense disturbance from iceberg scouring, which are major structural forces for hard substratum communities. This study compared sediment assemblages from two coves, near Rothera Point, Antarctic Peninsula, 67°S in order to understand the principal drivers of community structure, for the first time, evaluating composition across all size classes from mega- to micro-fauna. RESULTS: Morpho-taxonomy identified 77 macrofaunal species with densities of 464-16,084 individuals m-2. eDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene. Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, although the main taxonomic drivers varied between techniques. Morphotaxonomy identified the main differences between coves as the mollusc, Altenaeum charcoti, the cnidarian Edwardsia sp. and the polychaetes from the family cirratulidae. Metabarcoding identified greater numbers of species of nematodes, crustaceans and Platyhelminthes in South Cove, but more bivalve species in Hangar Cove. There were no detectable differences in community composition, measured through morphotaxonomy, between seasons, years or due to iceberg disturbance. CONCLUSIONS: This study found that unlike hard substratum communities the diversity of Antarctic soft sediment communities is correlated with the same factors as other latitudes. Diversity was significantly correlated with grain size and organic content, not iceberg scour. The increase in glacial sediment input as glaciers melt, may therefore be more important than increased iceberg disturbance.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Ecologia , Camada de Gelo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...