Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 050201, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364122

RESUMO

Using tools from quantum information theory, we present a general theory of indistinguishability of identical bosons in experiments consisting of passive linear optics followed by particle number detection. Our results do neither rely on additional assumptions on the input state of the interferometer, such as, for instance, a fixed mode occupation, nor on any assumption on the degrees of freedom that potentially make the particles distinguishable. We identify the expectation value of the projector onto the N-particle symmetric subspace as an operationally meaningful measure of indistinguishability, and derive tight lower bounds on it that can be efficiently measured in experiments. Moreover, we present a consistent definition of perfect distinguishability and characterize the corresponding set of states. In particular, we show that these states are diagonal in the computational basis up to a permutationally invariant unitary. Moreover, we find that convex combinations of states that describe partially distinguishable and perfectly indistinguishable particles can lead to perfect distinguishability, which itself is not preserved under convex combinations.

2.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37220757

RESUMO

We study theoretically electron interference in a Mach-Zehnder-like geometry formed by four zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they form intersection angles of 60∘. Depending on the interribbon separation, each intersection can be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with interfering pathways. Based on the mean-field Hubbard model and Green's function techniques, we evaluate the electron transport properties of such eight-terminal devices and identify pairs of terminals that are subject to self-interference. We further show that the scattering matrix formalism in the approximation of independent scattering at the four individual junctions provides accurate results as compared with the Green's function description, allowing for a simple interpretation of the interference process between two dominant pathways. This enables us to characterize the device sensitivity to phase shifts from an external magnetic flux according to the Aharonov-Bohm effect as well as from small geometric variations in the two path lengths. The proposed devices could find applications as magnetic field sensors and as detectors of phase shifts induced by local scatterers on the different segments, such as adsorbates, impurities or defects. The setup could also be used to create and study quantum entanglement.

3.
Phys Rev Lett ; 129(3): 037701, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905343

RESUMO

Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying different ribbons and intersection angles we provide evidence that this is a general feature with edge-polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series. Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies with applications for interferometry and entanglement.

4.
Phys Rev Lett ; 121(20): 200501, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500218

RESUMO

We study the degradability of fermionic Gaussian channels. Fermionic quantum channels are a central building block of quantum information processing with fermions, and the family of Gaussian channels, in particular, is relevant in the emerging field of electron quantum optics and its applications for quantum information. Degradable channels are of particular interest since they have a simple formula that characterizes their quantum capacity. We derive a simple standard form for fermionic Gaussian channels. This allows us to fully characterize all degradable n-mode fermionic Gaussian channels. In particular, we show that the only degradable such channels correspond to the attenuation or amplitude-damping channel for qubits.

5.
ACS Nano ; 10(6): 6291-8, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27203727

RESUMO

Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of phonon-stimulated Raman scattering and a counterintuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this QED framework opens a venue to analyze the correlations of photons emitted from a plasmonic cavity.

6.
Phys Rev Lett ; 110(17): 177602, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679779

RESUMO

The electron-nuclei (hyperfine) interaction is central to spin qubits in solid state systems. It can be a severe decoherence source but also allows dynamic access to the nuclear spin states. We study a double quantum dot exposed to an on-chip single-domain nanomagnet and show that its inhomogeneous magnetic field crucially modifies the complex nuclear spin dynamics such that the Overhauser field tends to compensate external magnetic fields. This turns out to be beneficial for polarizing the nuclear spin ensemble. We reach a nuclear spin polarization of ≃50%, unrivaled in lateral dots, and explain our manipulation technique using a comprehensive rate equation model.

7.
Phys Rev Lett ; 98(13): 130501, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17501173

RESUMO

We investigate the capacity of bosonic quantum channels for the transmission of quantum information. We calculate the quantum capacity for a class of Gaussian channels, including channels describing optical fibers with photon losses, by proving that Gaussian encodings are optimal. For arbitrary channels we show that achievable rates can be determined from few measurable parameters by proving that every channel can asymptotically simulate a Gaussian channel which is characterized by second moments of the initial channel. Along the way we provide a complete characterization of degradable Gaussian channels and those arising from teleportation protocols.

8.
Phys Rev Lett ; 96(13): 136401, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712008

RESUMO

We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.

9.
Phys Rev Lett ; 96(8): 080502, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16606161

RESUMO

We investigate Gaussian quantum states in view of their exceptional role within the space of all continuous variables states. A general method for deriving extremality results is provided and applied to entanglement measures, secret key distillation and the classical capacity of bosonic quantum channels. We prove that for every given covariance matrix the distillable secret key rate and the entanglement, if measured appropriately, are minimized by Gaussian states. This result leads to a clearer picture of the validity of frequently made Gaussian approximations. Moreover, it implies that Gaussian encodings are optimal for the transmission of classical information through bosonic channels, if the capacity is additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...