Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3682, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487326

RESUMO

Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/química , Mioblastos/metabolismo , Apoptose , Meios de Contraste/química , Compostos Férricos/química , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Bio Protoc ; 8(14): e2935, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395756

RESUMO

Brome mosaic virus (BMV) is a well-known plant virus representing single-stranded RNA (ssRNA) positive-sense viruses. It has been widely used as a model in multiple studies concerning plant virus biology, epidemiology and the application of viral capsids in nanotechnology. Herein, we describe a method for BMV purification based on ion-exchange and size-exclusion chromatography. The presented method is of similar efficiency to previously described protocols relying on differential centrifugation and can easily be scaled up. The resulting BMV capsids are stable and monodisperse and can be used for further applications.

3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1068-1069: 157-163, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29069631

RESUMO

Brome mosaic virus (BMV) has been successfully loaded with different types of nanoparticles. However, studies concerning its application as a nanoparticle carrier demand high-purity virions in large amounts. Existing BMV purification protocols rely on multiple differential ultracentrifugation runs of the initially purified viral preparation. Herein, we describe an alternative method for BMV purification based on ion-exchange chromatography and size-exclusion chromatography (SEC) yielding 0.2mg of virus from 1g of plant tissue. Our method is of similar efficiency to previously described protocols and can easily be scaled up. The method results in high-quality BMV preparations as confirmed by biophysical analyses, including cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), static light scattering (SLS), and circular dichroism (CD) measurements and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy. Our results revealed that purified BMV capsids are stable and monodisperse and can be used for further downstream applications. In this work, we also characterize secondary structure and size fluctuations of the BMV virion at different pH values.


Assuntos
Bromovirus/química , Bromovirus/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Vírion/química , Vírion/isolamento & purificação , Cromatografia em Gel , Dicroísmo Circular , Hordeum/metabolismo , Hordeum/virologia , Luz , Microscopia Eletrônica de Transmissão , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...