Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986285

RESUMO

The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses' zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.

2.
Int J Mol Sci ; 25(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38203729

RESUMO

Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.


Assuntos
Vírus da Ectromelia , Ectromelia Infecciosa , Animais , Camundongos , Adesivos , Adesividade , Células Dendríticas
3.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201217

RESUMO

Conventional dendritic cells (cDCs) are innate immune cells that play a pivotal role in inducing antiviral adaptive immune responses due to their extraordinary ability to prime and polarize naïve T cells into different effector T helper (Th) subsets. The two major subpopulations of cDCs, cDC1 (CD8α+ in mice and CD141+ in human) and cDC2 (CD11b+ in mice and CD1c+ in human), can preferentially polarize T cells toward a Th1 and Th2 phenotype, respectively. During infection with ectromelia virus (ECTV), an orthopoxvirus from the Poxviridae family, the timing and activation of an appropriate Th immune response contributes to the resistance (Th1) or susceptibility (Th2) of inbred mouse strains to the lethal form of mousepox. Due to the high plasticity and diverse properties of cDC subpopulations in regulating the quality of a specific immune response, in the present study we compared the ability of splenic cDC1 and cDC2 originating from different ECTV-infected mouse strains to mature, activate, and polarize the Th immune response during mousepox. Our results demonstrated that during early stages of mousepox, both cDC subsets from resistant C57BL/6 and susceptible BALB/c mice were activated upon in vivo ECTV infection. These cells exhibited elevated levels of surface MHC class I and II, and co-stimulatory molecules and showed enhanced potential to produce cytokines. However, both cDC subsets from BALB/c mice displayed a higher maturation status than that of their counterparts from C57BL/6 mice. Despite their higher activation status, cDC1 and cDC2 from susceptible mice produced low amounts of Th1-polarizing cytokines, including IL-12 and IFN-γ, and the ability of these cells to stimulate the proliferation and Th1 polarization of allogeneic CD4+ T cells was severely compromised. In contrast, both cDC subsets from resistant mice produced significant amounts of Th1-polarizing cytokines and demonstrated greater capability in differentiating allogeneic T cells into Th1 cells compared to cDCs from BALB/c mice. Collectively, our results indicate that in the early stages of mousepox, splenic cDC subpopulations from the resistant mouse strain can better elicit a Th1 cell-mediated response than the susceptible strain can, probably contributing to the induction of the protective immune responses necessary for the control of virus dissemination and for survival from ECTV challenge.


Assuntos
Ectromelia Infecciosa , Infecções por Poxviridae , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Citocinas , Células Dendríticas
4.
Animals (Basel) ; 12(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049768

RESUMO

The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.

5.
Front Cell Neurosci ; 14: 544612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281554

RESUMO

TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.

6.
Pathogens ; 9(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020446

RESUMO

Dendritic cells (DCs) and macrophages are the first line of antiviral immunity. Viral pathogens exploit these cell populations for their efficient replication and dissemination via the modulation of intracellular signaling pathways. Disruption of the noncanonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling has frequently been observed in lymphoid cells upon infection with oncogenic viruses. However, several nononcogenic viruses have been shown to manipulate the noncanonical NF-κB signaling in different cell types. This study demonstrates the modulating effect of ectromelia virus (ECTV) on the components of the noncanonical NF-κB signaling pathway in established murine cell lines: JAWS II DCs and RAW 264.7 macrophages. ECTV affected the activation of TRAF2, cIAP1, RelB, and p100 upon cell treatment with both canonical and noncanonical NF-κB stimuli and thus impeded DNA binding by RelB and p52. ECTV also inhibited the expression of numerous genes related to the noncanonical NF-κB pathway and RelB-dependent gene expression in the cells treated with canonical and noncanonical NF-κB activators. Thus, our data strongly suggest that ECTV influenced the noncanonical NF-κB signaling components in the in vitro models. These findings provide new insights into the noncanonical NF-κB signaling components and their manipulation by poxviruses in vitro.

7.
Immunol Invest ; 49(3): 232-248, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31240969

RESUMO

Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.


Assuntos
Catepsinas/deficiência , Células Dendríticas/imunologia , Vírus da Ectromelia/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Catepsinas/genética , Catepsinas/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Equilíbrio Th1-Th2
8.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167367

RESUMO

Bacteria from the species Trueperella pyogenes are a part of the biota of skin and mucous membranes of the upper respiratory, gastrointestinal, or urogenital tracts of animals, but also, opportunistic pathogens. T. pyogenes causes a variety of purulent infections, such as metritis, mastitis, pneumonia, and abscesses, which, in livestock breeding, generate significant economic losses. Although this species has been known for a long time, many questions concerning the mechanisms of infection pathogenesis, as well as reservoirs and routes of transmission of bacteria, remain poorly understood. Pyolysin is a major known virulence factor of T. pyogenes that belongs to the family of cholesterol-dependent cytolysins. Its cytolytic activity is associated with transmembrane pore formation. Other putative virulence factors, including neuraminidases, extracellular matrix-binding proteins, fimbriae, and biofilm formation ability, contribute to the adhesion and colonization of the host tissues. However, data about the pathogen-host interactions that may be involved in the development of T. pyogenes infection are still limited. The aim of this review is to present the current knowledge about the pathogenic potential and virulence of T. pyogenes.


Assuntos
Actinomycetaceae/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Actinomycetaceae/classificação , Actinomycetaceae/patogenicidade , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Reservatórios de Doenças , Genoma Bacteriano , Genômica/métodos , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/transmissão , Interações Hospedeiro-Patógeno/imunologia , Humanos , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico 16S , Relação Estrutura-Atividade , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/imunologia
9.
BMC Microbiol ; 19(1): 92, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077130

RESUMO

BACKGROUND: Cathepsins are a group of endosomal proteases present in many cells including dendritic cells (DCs). The activity of cathepsins is regulated by their endogenous inhibitors - cystatins. Cathepsins are crucial to antigen processing during viral and bacterial infections, and as such are a prerequisite to antigen presentation in the context of major histocompatibility complex class I and II molecules. Due to the involvement of DCs in both innate and adaptive immune responses, and the quest to understand the impact of poxvirus infection on host cells, we investigated the influence of ectromelia virus (ECTV) infection on cathepsin and cystatin levels in murine conventional DCs (cDCs). ECTV is a poxvirus that has evolved many mechanisms to avoid host immune response and is able to replicate productively in DCs. RESULTS: Our results showed that ECTV-infection of JAWS II DCs and primary murine GM-CSF-derived bone marrow cells down-regulated both mRNA and protein of cathepsin B, L and S, and cystatin B and C, particularly during the later stages of infection. Moreover, the activity of cathepsin B, L and S was confirmed to be diminished especially at later stages of infection in JAWS II cells. Consequently, ECTV-infected DCs had diminished ability to endocytose and process a soluble antigen. Close examination of cellular protein distribution showed that beginning from early stages of infection, the remnants of cathepsin L and cystatin B co-localized and partially co-localized with viral replication centers (viral factories), respectively. Moreover, viral yield increased in cDCs treated with siRNA against cathepsin B, L or S and subsequently infected with ECTV. CONCLUSIONS: Taken together, our results indicate that infection of cDCs with ECTV suppresses cathepsins and cystatins, and alters their cellular distribution which impairs the cDC function. We propose this as an additional viral strategy to escape immune responses, enabling the virus to replicate effectively in infected cells.


Assuntos
Catepsinas/genética , Cistatinas/genética , Células Dendríticas/virologia , Vírus da Ectromelia/fisiologia , Animais , Células Dendríticas/imunologia , Regulação para Baixo , Endossomos/imunologia , Endossomos/virologia , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Replicação Viral
10.
Oxid Med Cell Longev ; 2019: 6927380, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089414

RESUMO

Toll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9. We investigated the involvement of Syk, Hrs, and STAM in the regulation of the TLR3 signaling pathway in a murine astrocyte cell line C8-D1A following cell stimulation with a viral dsRNA mimetic. Our data uncover a relationship between TLR3 and ESCRT-0, point out Syk as dsRNA-activated kinase, and suggest the role for Syk in mediating TLR3 signaling in murine astrocytes. We show molecular events that occur shortly after dsRNA stimulation of astrocytes and result in Syk Tyr-342 phosphorylation. Further, TLR3 undergoes proteolytic processing; the resulting TLR3 N-terminal form interacts with Hrs. The knockdown of Syk and Hrs enhances TLR3-mediated antiviral response in the form of IFN-ß, IL-6, and CXCL8 secretion. Understanding the role of Syk and Hrs in TLR3 immune responses is of high importance since activation and precise execution of the TLR3 signaling pathway in the brain seem to be particularly significant in mounting an effective antiviral defense. Infection of the brain with herpes simplex type 1 virus may increase the secretion of amyloid-ß by neurons and astrocytes and be a causal factor in degenerative diseases such as Alzheimer's disease. Errors in TLR3 signaling, especially related to the precise regulation of the receptor transportation and degradation, need careful observation as they may disclose foundations to identify novel or sustain known therapeutic targets.


Assuntos
Antivirais/metabolismo , Astrócitos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfoproteínas/metabolismo , Quinase Syk/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Ligantes , Camundongos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Poli I-C/farmacologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/química , Regulação para Cima/efeitos dos fármacos
11.
Immunol Invest ; 48(4): 392-409, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30884992

RESUMO

Ectromelia virus (ECTV) is the etiological agent of mousepox, an acute and systemic disease with high mortality rates in susceptible strains of mice. Resistance and susceptibility to mousepox are triggered by the dichotomous T-helper (Th) immune response generated in infected animals, with strong protective Th1 or nonprotective Th2 profile, respectively. Th1/Th2 balance is influenced by dendritic cells (DCs), which were shown to differ in their ability to polarize naïve CD4+ T cells in different mouse strains. Therefore, we have studied the inner-strain differences in the ability of conventional DCs (cDCs), generated from resistant (C57BL/6) and susceptible (BALB/c) mice, to stimulate proliferation and activation of Th cells upon ECTV infection. We found that ECTV infection of GM-CSF-derived bone marrow (GM-BM) cells, composed of cDCs and macrophages, affected initiation of allogeneic CD4+ T cells proliferation in a mouse strain-independent manner. Moreover, infected GM-BM cells from both mouse strains failed to induce and even inhibited the production of Th1 (IFN-γ and IL-2), Th2 (IL-4 and IL-10) and Th17 (IL-17A) cytokines by allogeneic CD4+ T cells. These results indicate that in in vitro conditions ECTV compromises the ability of cDCs to initiate/polarize adaptive antiviral immune response independently of the host strain resistance/susceptibility to lethal infection.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Linfócitos T CD4-Positivos/imunologia , Vírus da Ectromelia , Ectromelia Infecciosa/imunologia , Animais , Citocinas/imunologia , Ectromelia Infecciosa/virologia , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
12.
Arch Virol ; 164(2): 559-565, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374707

RESUMO

Ectromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport. This indicates a strong ability of ECTV to subvert the MT cytoskeleton of highly specialized immune cells.


Assuntos
Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/metabolismo , Macrófagos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Linhagem Celular , Ectromelia Infecciosa/virologia , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo
13.
Viruses ; 10(5)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772718

RESUMO

Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission⁻fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis.


Assuntos
Vírus da Ectromelia/fisiologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Animais , Autofagia/fisiologia , Dinaminas/metabolismo , Vírus da Ectromelia/ultraestrutura , Fibroblastos/patologia , GTP Fosfo-Hidrolases/metabolismo , Células L , Macrófagos/patologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/virologia , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Proteínas Mitocondriais/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/análise , Tubulina (Proteína)/metabolismo , Vírion/metabolismo , Replicação Viral
14.
Cent Eur J Immunol ; 43(4): 363-370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30799983

RESUMO

The aim of the study was to evaluate the influence of ectromelia virus (ECTV) infection on actin cytoskeleton rearrangement in immune cells, such as macrophages and dendritic cells (DCs). Using scanning electron and fluorescence microscopy analysis we observed the presence of long actin-based cellular extensions, formed by both types of immune cells at later stages of infection with ECTV. Such extensions contained straight tubulin filaments and numerous punctuate mitochondria. Moreover, these long cellular projections extended to a certain length and formed convex structures termed "cytoplasmic packets". These structures contained numerous viral particles and presumably were sites of progeny virions' release via budding. Further, discrete mitochondria and separated tubulin filaments that formed a scaffold for accumulated mitochondria were visible within cytoplasmic packets. ECTV-induced long actin-based protrusions resemble "cytoplasmic corridors" and probably participate in virus dissemination. Our data demonstrate the incredible capacity for adaptation of ECTV to its natural host immune cells, in which it can survive, replicate and induce effective mechanisms for viral spread and dissemination.

15.
PLoS One ; 12(6): e0179166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28604814

RESUMO

Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/virologia , Vírus da Ectromelia/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Animais , Antígenos/imunologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Imunofenotipagem , Interferon Tipo I/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/virologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Replicação Viral
16.
Front Microbiol ; 8: 2539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312229

RESUMO

Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data strongly suggest that in vitro modulation of GM-BM innate and adaptive immune functions by ECTV occurs irrespective of whether the mouse strain is susceptible or resistant to infection. Moreover, ECTV limits the GM-BM (including cDCs) capacity to stimulate protective Th1 immune response. We cannot exclude that this may be an important factor in the generation of non-protective Th2 immune response in susceptible BALB/c mice in vivo.

17.
Cytoskeleton (Hoboken) ; 73(8): 396-417, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27169394

RESUMO

Ectromelia virus (ECTV, the causative agent of mousepox), which represents the same genus as variola virus (VARV, the agent responsible for smallpox in humans), has served for years as a model virus for studying mechanisms of poxvirus-induced disease. Despite increasing knowledge on the interaction between ECTV and its natural host-the mouse-surprisingly, still little is known about the cell biology of ECTV infection. Because pathogen interaction with the cytoskeleton is still a growing area of research in the virus-host cell interplay, the aim of the present study was to evaluate the consequences of ECTV infection on the cytoskeleton in a murine fibroblast cell line. The viral effect on the cytoskeleton was reflected by changes in migration of the cells and rearrangement of the architecture of tubulin, vimentin, and actin filaments. The virus-induced cytoskeletal rearrangements observed in these studies contributed to the efficient cell-to-cell spread of infection, which is an important feature of ECTV virulence. Additionally, during later stages of infection L929 cells produced two main types of actin-based cellular protrusions: short (actin tails and "dendrites") and long (cytoplasmic corridors). Due to diversity of filopodial extensions induced by the virus, we suggest that ECTV represents a valuable new model for studying processes and pathways that regulate the formation of cytoskeleton-based cellular structures. © 2016 Wiley Periodicals, Inc.


Assuntos
Citoesqueleto/metabolismo , Vírus da Ectromelia/crescimento & desenvolvimento , Fibroblastos/metabolismo , Animais , Linhagem Celular , Vírus da Ectromelia/metabolismo , Humanos , Camundongos
18.
Pathog Dis ; 73(9): ftv088, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474845

RESUMO

Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteção Cruzada , Vírus da Ectromelia/imunologia , Ectromelia Infecciosa/prevenção & controle , Epitopos de Linfócito T/imunologia , Vaccinia virus/imunologia , Animais , Antígenos Virais/administração & dosagem , Epitopos de Linfócito T/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos
19.
Postepy Hig Med Dosw (Online) ; 69: 398-417, 2015 Apr 03.
Artigo em Polonês | MEDLINE | ID: mdl-25897100

RESUMO

Th17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes. It has been shown that these cells may contribute to tissue damage during certain inflammatory and autoimmune diseases and also play an important role in antitumor and antimicrobial, particularly antibacterial, immunity. Bacteria stimulate the Th17 response through several Toll-like (TLR), NOD-like (NLR) and C-type lectin (CLR) receptors. When activated, Th17 lymphocytes produce several cytokines, mainly interleukin (IL)-17 and chemokines, that further attract and activate phagocytes to mediate bacterial clearance. Thus Th17 cells contribute to induction of host protective immunity, particularly against extracellular bacterial pathogens: Staphylococcus aureus, Streptococcus pneumoniae and Klebsiella pneumoniae. Furthermore, numerous studies indicate the importance of Th17 lymphocytes in immunity against intracellular bacteria such as Francisella tularensis and Chlamydia muridarum. In this case, the protective immune response is mediated mainly through stimulation of local dendritic cell (DC) function for establishing a Th1 immune response, indispensable for controlling intracellular infectious agents. However, deregulation of the Th17/IL17 response during bacterial infections may lead to profound pathologies. As a result, Th17 cells participate in chronic inflammatory diseases, leading to tissue destruction and favoring tumor development. This article summarizes current understanding of the bacteriainduced Th17 response in the context of the protective immune response and immunopathology.


Assuntos
Doenças Autoimunes/imunologia , Infecções Bacterianas/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Interleucina-17/imunologia , Células Th17/imunologia , Humanos , Imunidade Celular
20.
Pathog Dis ; 68(3): 105-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23776161

RESUMO

During mousepox in resistant (C57BL/6) or susceptible (BALB/c) strains of mice, stimulation of Th1 or Th2 cytokine immune response, respectively, is observed. Because mechanisms of different polarization of T cells remain elusive, in this study, we quantitatively assessed the phenotype of antigen-presenting cells (APCs) involved in ectromelia virus (ECTV) antigen presentation and cluster formation with effector cells in secondary lymphoid organs of BALB/c and C57BL/6 mice. We showed that both strains of mice display similar dynamics and kinetics of viral antigen presentation by CD11c(+) , CD11b(+) , and CD19(+) cells. CD11c(+) and CD11b(+) cells highly participated in viral antigen presentation during all stages of mousepox, whereas CD19(+) cells presented viral peptides later in infection. The main population of dendritic cells (DCs) engaged in ECTV antigen presentation and cell junction formation with effector cells was a population of myeloid CD11b(+) DCs (mDCs). We suggest that, on the one hand, ECTV may differentially affect the functions of APCs depending on the strain of mice. On the other hand, we suggest that some types of APCs, such as mDCs or other DCs subsets, have different abilities to direct the shape of immune response depending on the host resistance to mousepox.


Assuntos
Células Apresentadoras de Antígenos/classificação , Células Apresentadoras de Antígenos/virologia , Vírus da Ectromelia/imunologia , Imunofenotipagem , Animais , Células Apresentadoras de Antígenos/química , Antígenos CD19/análise , Antígeno CD11b/análise , Antígeno CD11c/análise , Células Dendríticas/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...