Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(10): 2498-2501, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561384

RESUMO

Integrated silicon nitride waveguides of 100 nm height can achieve ultralow propagation losses below 0.1 dB/cm at the 1550 nm wavelength band but lack the scattering strength to form efficient grating couplers. An enhanced grating coupler design based on an amorphous silicon layer on top of silicon nitride is proposed and demonstrated to improve the directionality of the coupler. The fabrication process is optimized for a self-alignment process between the amorphous silicon and silicon nitride layers without increasing waveguide losses. Experimental coupling losses of 5 dB and a 3 dB bandwidth of 75 nm are achieved with both regular and focusing designs.

2.
Opt Express ; 28(14): 20992-21001, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680148

RESUMO

Optical refractive-index sensors exploiting selective co-integration of plasmonics with silicon photonics has emerged as an attractive technology for biosensing applications that can unleash unprecedented performance breakthroughs that reaps the benefits of both technologies. However, towards this direction, a major challenge remains their integration using exclusively CMOS-compatible materials. In this context, herein, we demonstrate, for the first time to our knowledge, a CMOS-compatible plasmo-photonic Mach-Zehnder-interferometer (MZI) based on aluminum and Si3N4 waveguides, exhibiting record-high bulk sensitivity of 4764 nm/RIU with clear potential to scale up the bulk sensitivity values by properly engineering the design parameters of the MZI. The proposed sensor is composed of Si3N4 waveguides butt-coupled with an aluminum stripe in one branch to realize the sensing transducer. The reference arm is built by Si3N4 waveguides, incorporating a thermo-optic phase shifter followed by an MZI-based variable optical attenuation stage to maximize extinction ratio up to 38 dB, hence optimizing the overall sensing performance. The proposed sensor exhibits the highest bulk sensitivity among all plasmo-photonic counterparts, while complying with CMOS manufacturing standards, enabling volume manufacturing.

3.
Opt Express ; 27(12): 17102-17111, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252927

RESUMO

We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interference at the sensor output. Bulk sensitivity values of 1930 nm/RIU were experimentally measured for a Mach Zehnder Interferometer (MZI) with a Free Spectral Range of 24.8 nm, along with extinction ratio of more than 35 dB, demonstrating the functional benefits of the co-integration of plasmonic and photonic waveguides.


Assuntos
Técnicas Biossensoriais/métodos , Interferometria/métodos , Óptica e Fotônica/métodos , Compostos de Silício/química , Eletricidade , Refratometria
4.
Opt Express ; 26(10): 12469-12478, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801284

RESUMO

We demonstrate wavelength-division-multiplexed (WDM) 200 Gb/s (8 × 25 Gb/s) data transmission over 100 µm long aluminum (Al) surface-plasmon-polariton (SPP) waveguides on a Si3N4 waveguide platform at telecom wavelengths. The Al SPP waveguide was evaluated in terms of signal integrity by performing bit-error-rate (BER) measurements that revealed error-free operation for all eight 25 Gb/s non-return-to-zero (NRZ) modulated data channels with power penalties not exceeding 0.2 dB at 10-9. To the best of our knowledge, this is the first demonstration of WDM enabled data transmission over complementary-metal-oxide-semiconductor (CMOS) SPP waveguides fueling future development of CMOS compatible plasmo-photonic devices for on-chip optical interconnections.

5.
Opt Express ; 25(1): 394-408, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085833

RESUMO

Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/µm, 0.18 dB/µm and 0.52 dB/µm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05-1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

6.
Opt Express ; 24(9): 9389-96, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137555

RESUMO

We demonstrate a silicon-organic hybrid (SOH) Mach-Zehnder modulator (MZM) generating four-level amplitude shift keying (4ASK) signals at symbol rates of up to 64 GBd both at room temperature and at an elevated temperature of 80°C. The measured line rate of 128 Gbit/s corresponds to the highest value demonstrated for silicon-based MZM so far. We report bit error ratios of 10-10 (64 GBd BPSK), 10-5 (36 GBd 4ASK), and 4 × 10-3 (64 GBd 4ASK) at room temperature. At 80 °C, the respective bit error ratios are 10-10, 10-4, and 1.3 × 10-2. The high-temperature experiments were performed in regular oxygen-rich ambient atmosphere.

7.
Phys Rev Lett ; 110(6): 065003, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432262

RESUMO

The first experimental evidence of the higher-order harmonic radiation generated by periodically modulated targets (gratings) irradiated by relativistic, ultrashort (<30 fs), high intensity [Iλ(2)=10(20) (W/cm(2)) µm(2)] laser pulse is presented. The interference effects on the grating surface lead to the emission of high harmonics up to 45th order along the target surface when the laser beam is focused onto a grating target close to normal incidence (5°). By means of numerical simulations we demonstrate the possibility of controlling the composition of the higher harmonic spectrum and we prove the influence of the laser pulse parameters in the interaction area (laser focusing and wavefront curvature) on the emission angle of a certain high harmonic order.

8.
Phys Rev Lett ; 110(20): 205001, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167421

RESUMO

We report on the temporally and spatially resolved detection of the precursory stages that lead to the formation of an unmagnetized, supercritical collisionless shock in a laser-driven laboratory experiment. The measured evolution of the electrostatic potential associated with the shock unveils the transition from a current free double layer into a symmetric shock structure, stabilized by ion reflection at the shock front. Supported by a matching particle-in-cell simulation and theoretical considerations, we suggest that this process is analogous to ion reflection at supercritical collisionless shocks in supernova remnants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...