Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 598: 938-948, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468120

RESUMO

The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring.


Assuntos
Florestas , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Paris , Poaceae
2.
Sci Rep ; 6: 38838, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000732

RESUMO

The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

3.
J Anim Ecol ; 78(6): 1307-17, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19619219

RESUMO

1. The structure and dynamics of prey populations are shaped by the foraging behaviours of their predators. Yet, there is still little documentation on how distinct predator foraging types control biodiversity, food-web architecture and ecosystem functioning. 2. We experimentally compared the effects of model fish species of two major foraging types of lake planktivores: a size-selective visual feeder (bluegill), and a filter feeder (gizzard shad). The visual feeder forages on individually captured consumer prey, whereas the filter feeder forages on various prey simultaneously, not only consumers but also primary producers. We ran a 1-month mesocosm experiment cross-classifying a biomass gradient of each predator type. We analysed the effect of each fish on food-web architecture by computing major topological descriptors over time (connectance, link density, omnivory index, etc.). These descriptors were computed from 80 predator-prey binary matrices, using taxa mostly identified at the species level. 3. We found that the visual feeder induced more trophic cul-de-sac (inedible) primary-producer species, lower link density and connectance, and lower levels of food-web omnivory and generalism than the filter feeder. Yet, predator biomass did not affect food-web topology. 4. Our results highlight that top-predator foraging behaviour is a key functional trait that can drive food-web topology and ultimately ecosystem functioning.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Biodiversidade , Peixes/fisiologia , Modelos Biológicos
4.
Nature ; 438(7069): 846-9, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16341012

RESUMO

Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.


Assuntos
Ecossistema , Chuva , Árvores/fisiologia , África , Animais , Biomassa , Clima Desértico , Poaceae/fisiologia , Solo/análise , Madeira
5.
Theor Popul Biol ; 66(3): 163-73, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15465118

RESUMO

In terrestrial plants the segregation of male and female reproductions on different individuals results in the seed-shadow handicap: males do not disperse any seed so that the number of local patches reached by seeds is potentially reduced in dioecious populations in comparison to hermaphrodite populations. An analytical model, incorporating a lottery-based recruitment and dispersal stochasticity, was built. The spatially mediated cost of the seed-shadow handicap has been assessed considering the criterions for the invasion of a resident hermaphrodite species by a dioecious species and the reverse invasion, both species having the same demographic parameters but assuming a likely higher fecundity for dioecious females. The reciprocal invasion of a dioecious and hermaphrodite species differing only by their fecundity is never possible. The seed-shadow handicap disappears when the dispersal or survival rate is high enough. This latter point is due to dispersal stochasticity, which allows for the existence of empty patches. A low fecundity and an aggregated seed distribution increase dispersal stochasticity and increase the positive impact of a low mortality rate on the relative competitivity of dioecy and hermaphroditism. Adding a dispersal cost has a comparable effect but also requires higher dispersal rates for the dioecious invasion.


Assuntos
Fenômenos Fisiológicos Vegetais , Reprodução , Processos Estocásticos
6.
Tree Physiol ; 24(2): 205-16, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14676036

RESUMO

Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia , Araliaceae/anatomia & histologia , Araliaceae/fisiologia , Asteraceae/anatomia & histologia , Asteraceae/fisiologia , Côte d'Ivoire , Nitrogênio/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia
7.
Oecologia ; 110(4): 576-583, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307253

RESUMO

Bark properties (mainly thickness) are usually presented as the main explanation for tree survival in intense fires. Savanna fires are mild, frequent, and supposed to affect tree recruitment rather than adult survival: trunk profile and growth rate of young trees between two successive fires can also affect survival. These factors and fire severity were measured on a sample of 20 trees near the recruitment stage of two savanna species chosen for their contrasted fire resistance strategies (Crossopteryx febrifuga and Piliostigma thonningii). Crossopteryx has a higher intrinsic resistance to fire (bark properties) than Piliostigma: a 20-mm-diameter stem of Crossopteryx survives exposure to 650°C, while Piliostigma needs a diameter of at least 40 mm to survive. Crossopteryx has a thicker trunk than Piliostigma: for two trees of the same height, the basal diameter of Crossopteryx will be 1.6 times greater. Piliostigma grows 2.26 times faster than Crossopteryx between two successive fires. The two species have different fire resistance strategies: one relies on resistance of aboveground structures to fire, while the other relies on its ability to quickly re-build aboveground structures. Crossopteryx is able to recruit in almost any fire conditions while Piliostigma needs locally or temporarily milder fire conditions. In savannas, fire resistance is a complex property which cannot be assessed simply by measuring only one of its components, such as bark thickness. Bark properties, trunk profile and growth rate define strategies of fire resistance. Fire resistance may interact with competition: we suggest that differences in fire resistance strategies have important effects on the structure and dynamics of savanna ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...