Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113542, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461474

RESUMO

Magnetization of inertial confinement implosions is a promising means of improving their performance, owing to the potential reduction of energy losses within the target and mitigation of hydrodynamic instabilities. In particular, cylindrical implosions are useful for studying the influence of a magnetic field, thanks to their axial symmetry. Here, we present experimental results from cylindrical implosions on the OMEGA-60 laser using a 40-beam, 14.5 kJ, 1.5 ns drive and an initial seed magnetic field of B0 = 30 T along the axes of the targets, compared with reference results without an imposed B-field. Implosions were characterized using time-resolved x-ray imaging from two orthogonal lines of sight. We found that the data agree well with magnetohydrodynamic simulations, once radiation transport within the imploding plasma is considered. We show that for a correct interpretation of the data in these types of experiments, explicit radiation transport must be taken into account.

2.
Phys Rev E ; 106(3-2): 035206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266806

RESUMO

Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 2): 026407, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21929120

RESUMO

A very fast method for calculating line shapes in the presence of an external magnetic field accounting for charge particle dynamics is proposed. It is based on a reformulation of the frequency fluctuation model, which provides an expression of the dynamic line shape as a functional of the static distribution function of frequencies. In the presence of an external magnetic field, the distribution of intensity and polarization of the emission depends on the angle between the observation line and the magnetic field's direction. Comparisons with numerical simulations and experimental results for various plasma conditions show very good agreement. Results on hydrogen lines in the context of magnetic fusion and the Lyman-α line, accounting for fine structure, emitted by argon in the context of inertial fusion, are also presented.

4.
Appl Spectrosc ; 63(11): 1223-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19891830

RESUMO

This paper presents a study on the asymmetry of the Balmer H(beta) profile in plasmas produced by microwaves at high pressure with the help of some functions of asymmetry for the whole profile, as well as by means of some specific parameters characterizing only its central dip. The study shows how this asymmetry--very low in our case--depends on the electron density and flux of gases and how the existence of inhomogeneities in the plasma can affect the shape and symmetry of this line. Also, limitations on the determination of the asymmetry are pointed out and the use of this profile for plasma diagnosis is discussed.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046402, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518354

RESUMO

Experimental measurements of the center of the H_{beta} Stark profile on three different installations have been done to study its asymmetry in wide ranges of electron density, temperature, and plasma conditions. Theoretical calculations for the analysis of experimental results have been performed using the standard theory and computer simulations and included separately quadrupolar and quadratic Stark effects. Earlier experimental results and theoretical calculations of other authors have been reviewed as well. The experimental results are well reproduced by the calculations at high and moderate densities.

6.
Appl Opt ; 18(17): 2914-6, 1979 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20212776
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...