Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 15(6): 934-953, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782014

RESUMO

Human-assisted movement has allowed the Asian longhorned beetle (ALB, Anoplophora glabripennis (Motschulsky)) to spread beyond its native range and become a globally regulated invasive pest. Within its native range of China and the Korean peninsula, human-mediated dispersal has also caused cryptic translocation of insects, resulting in population structure complexity. Previous studies used genetic methods to detangle this complexity but were unable to clearly delimit native populations which is needed to develop downstream biosurveillance tools. We used genome-wide markers to define historical population structure in native ALB populations and contemporary movement between regions. We used genotyping-by-sequencing to generate 6102 single-nucleotide polymorphisms (SNPs) and amplicon sequencing to genotype 53 microsatellites. In total, we genotyped 712 individuals from ALB's native distribution. We observed six distinct population clusters among native ALB populations, with a clear delineation between northern and southern groups. Most of the individuals from South Korea were distinct from populations in China. Our results also indicate historical divergence among populations and suggest limited large-scale admixture, but we did identify a restricted number of cases of contemporary movement between regions. We identified SNPs under selection and describe a clinal allele frequency pattern in a missense variant associated with glycerol kinase, an important enzyme in the utilization of an insect cryoprotectant. We further demonstrate that small numbers of SNPs can assign individuals to geographic regions with high probability, paving the way for novel ALB biosurveillance tools.

2.
Evol Appl ; 13(1): 62-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892944

RESUMO

We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.

3.
Sci Rep ; 9(1): 11614, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406137

RESUMO

The NLRs or NBS-LRRs (nucleotide-binding, leucine-rich-repeat) form the largest resistance gene family in plants, with lineage-specific contingents of TNL, CNL and RNL subfamilies and a central role in resilience to stress. The origin, evolution and distribution of NLR sequences has been unclear owing in part to the variable size and diversity of the RNL subfamily and a lack of data in Gymnosperms. We developed, searched and annotated transcriptomes assemblies of seven conifers and identified a resource of 3816 expressed NLR sequences. Our analyses encompassed sequences data spanning the major groups of land plants and determinations of NLR transcripts levels in response to drought in white spruce. We showed that conifers have among the most diverse and numerous RNLs in tested land plants. We report an evolutionary swap in the formation of RNLs, which emerged from the fusion of an RPW8 domain to a NB-ARC domain of CNL. We uncovered a quantitative relationship between RNLs and TNLs across all land plants investigated, with an average ratio of 1:10. The conifer RNL repertoire harbours four distinct groups, with two that differ from Angiosperms, one of which contained several upregulated sequences in response to drought while the majority of responsive NLRs are downregulated.


Assuntos
Secas , Genes de Plantas , Proteínas NLR/genética , Proteínas de Plantas/genética , Traqueófitas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Evolução Molecular , Proteínas NLR/química , Proteínas de Plantas/química , Traqueófitas/fisiologia , Transcriptoma
4.
Mol Ecol ; 28(6): 1476-1490, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30270494

RESUMO

Gene copy number variations (CNVs) involved in phenotypic variations have already been shown in plants, but genomewide testing of CNVs for adaptive variation was not doable until recent technological developments. Thus, reports of the genomic architecture of adaptation involving CNVs remain scarce to date. Here, we investigated F1 progenies of an intraprovenance cross (north-north cross, 58th parallel) and an interprovenances cross (north-south cross, 58th/49th parallels) for CNVs using comparative genomic hybridization on arrays of probes targeting gene sequences in balsam poplar (Populus balsamifera L.), a widespread North American forest tree. A total of 1,721 genes were found in varying copy numbers over the set of 19,823 tested genes. These gene CNVs presented an estimated average size of 8.3 kb and were distributed over poplar's 19 chromosomes including 22 hotspot regions. Gene CNVs number was higher for the interprovenance progeny in accordance with an expected higher genetic diversity related to the composite origin of this family. Regression analyses between gene CNVs and seven adaptive trait variations resulted in 23 significant links; among these adaptive gene CNVs, 30% were located in hotspots. One-to-five gene CNVs were found related to each of the measured adaptive traits and annotated for both biotic and abiotic stress responses. These annotations can be related to the occurrence of a higher pathogenic pressure in the southern parts of balsam poplar's distribution, and higher photosynthetic assimilation rates and water-use efficiency at high latitudes. Overall, our findings suggest that gene CNVs typically having higher mutation rates than SNPs may in fact represent efficient adaptive variations against fast-evolving pathogens.


Assuntos
Adaptação Fisiológica/genética , Variações do Número de Cópias de DNA/genética , Genoma/genética , Populus/genética , Hibridização Genômica Comparativa , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Populus/fisiologia
5.
BMC Plant Biol ; 18(1): 231, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309315

RESUMO

BACKGROUND: Outbreaks of spruce budworm (SBW, Choristoneura fumiferana Clem.) cause major recurrent damage in boreal conifers such as white spruce (Picea glauca [Moench] Voss) and large losses of forest biomass in North America. Although defensive phenolic compounds have recently been linked to chemical resistance against SBW, their genetic basis remains poorly understood in forest trees, especially in conifers. Here, we used diverse association genetics approaches to discover genes and their variants that may control the accumulation of acetophenones, and dissect the genetic architecture of these defence compounds against SBW in white spruce mature trees. RESULTS: Out of 4747 single nucleotide polymorphisms (SNPs) from 2312 genes genotyped in a population of 211 unrelated individuals, genetic association analyses identified 35 SNPs in 33 different genes that were significantly associated with the defence traits by using single-locus, multi-locus and multi-trait approaches. The multi-locus approach was particularly effective at detecting SNP-trait associations that explained a large fraction of the phenotypic variance (from 20 to 43%). Significant genes were regulatory including the NAC transcription factor, or they were involved in carbohydrate metabolism, falling into the binding, catalytic or transporter activity functional classes. Most of them were highly expressed in foliage. Weak positive phenotypic correlations were observed between defence and growth traits, indicating little or no evidence of defence-growth trade-offs. CONCLUSIONS: This study provides new insights on the genetic architecture of tree defence traits, contributing to our understanding of the physiology of resistance mechanisms to biotic factors and providing a basis for the genetic improvement of the constitutive defence of white spruce against SBW.


Assuntos
Acetofenonas/metabolismo , Mariposas/patogenicidade , Picea/metabolismo , Picea/parasitologia , Animais , Fenol , Picea/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Plant Cell Environ ; 41(3): 620-629, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314043

RESUMO

Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence-related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgßGLU-1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgßglu-1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgßglu-1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgßGLU-1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.


Assuntos
Acetofenonas/metabolismo , Pinaceae/metabolismo , Proteínas de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Filogenia , Pinaceae/genética , Proteínas de Plantas/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
7.
Tree Physiol ; 38(3): 442-456, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040752

RESUMO

Temperatures are expected to increase over the next century in all terrestrial biomes and particularly in boreal forests, where drought-induced mortality has been predicted to rise. Genomics research is helping to develop hypotheses regarding the molecular basis of drought tolerance and recent work proposed that the osmo-protecting dehydrin proteins have undergone a clade-specific expansion in the Pinaceae, a major group of conifer trees. The objectives of this study were to identify all of the putative members of the gene family, trace their evolutionary origin, examine their structural diversity and test for drought-responsive expression. We identified 41 complete dehydrin coding sequences in Picea glauca, which is four times more than most angiosperms studied to date, and more than in pines. Phylogenetic reconstructions indicated that the family has undergone an expansion in conifers, with parallel evolution implicating the sporadic resurgence of certain amino acid sequence motifs, and a major duplication giving rise to a clade specific to the Pinaceae. A variety of plant dehydrin structures were identified with variable numbers of the A-, E-, S- and K-segments and an N-terminal (N1) amino acid motif including assemblages specific to conifers. The expression of several of the spruce dehydrins was tissue preferential under non-stressful conditions or responded to water stress after 7-18 days without watering, reflecting changes in osmotic potential. We found that dehydrins with N1 K2 and N1 AESK2 sequences were the most responsive to the lack of water. Together, the family expansion, drought-responsive expression and structural diversification involving loss and gain of amino acid motifs suggests that subfunctionalization has driven the diversification seen among dehydrin gene duplicates. Our findings clearly indicate that dehydrins represent a large family of candidate genes for drought tolerance in spruces and in other Pinaceae that may underpin adaptability in spatially and temporally variable environments.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Pinaceae/fisiologia , Proteínas de Plantas/genética , Secas , Filogenia , Picea/genética , Picea/fisiologia , Pinaceae/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
8.
Sci Rep ; 7: 42273, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205578

RESUMO

Variation in insect herbivory can lead to population structure in plant hosts as indicated by defence traits. In annual herbaceous, defence traits may vary between geographic areas but evidence of such patterns is lacking for long-lived species. This may result from the variety of selection pressures from herbivores, long distance gene flow, genome properties, and lack of research. We investigated the antagonistic interaction between white spruce (Picea glauca) and spruce budworm (SBW, Choristoneura fumiferana) the most devastating forest insect of eastern North America in common garden experiments. White spruces that are able to resist SBW attack were reported to accumulate the acetophenones piceol and pungenol constitutively in their foliage. We show that levels of these acetophenones and transcripts of the gene responsible for their release is highly heritable and that their accumulation is synchronized with the most devastating stage of SBW. Piceol and pungenol concentrations negatively correlate with rate of development in female SBW and follow a non-random geographic variation pattern that is partially explained by historical damage from SBW and temperature. Our results show that accumulation of acetophenones is an efficient resistance mechanism against SBW in white spruce and that insects can affect population structure of a long-lived plant.


Assuntos
Herbivoria/fisiologia , Insetos/fisiologia , Pinaceae/crescimento & desenvolvimento , Pinaceae/parasitologia , Árvores/crescimento & desenvolvimento , Árvores/parasitologia , Animais , Meio Ambiente , Feminino , Geografia , Modelos Lineares , Pinaceae/genética , Dinâmica Populacional , Característica Quantitativa Herdável , Árvores/genética
9.
New Phytol ; 207(1): 172-187, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25728802

RESUMO

Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Picea/genética , Transcriptoma/genética , Parede Celular/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genes de Plantas , Lignina/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Propanóis/metabolismo , Estações do Ano , Especificidade da Espécie , Fatores de Tempo , Madeira/crescimento & desenvolvimento , Xilema/genética
10.
Plant J ; 81(1): 68-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25302566

RESUMO

Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a ß-glucosidase gene, Pgßglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgßglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgßGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgßglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgßglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgßglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgßglu-1 transcript expression, PgßGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.


Assuntos
Resistência à Doença/genética , Picea/fisiologia , Proteínas de Plantas/fisiologia , beta-Glucosidase/fisiologia , Acetofenonas/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mariposas/fisiologia , Picea/enzimologia , Picea/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
11.
J Exp Bot ; 65(9): 2319-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713992

RESUMO

This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.


Assuntos
Redes Reguladoras de Genes , Picea/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Xilema/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Picea/crescimento & desenvolvimento , Picea/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Fatores de Transcrição/genética , Xilema/genética , Xilema/metabolismo
12.
BMC Plant Biol ; 14: 95, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24734980

RESUMO

BACKGROUND: A positive relationship between genome size and intron length is observed across eukaryotes including Angiosperms plants, indicating a co-evolution of genome size and gene structure. Conifers have very large genomes and longer introns on average than most plants, but impacts of their large genome and longer introns on gene structure has not be described. RESULTS: Gene structure was analyzed for 35 genes of Picea glauca obtained from BAC sequencing and genome assembly, including comparisons with A. thaliana, P. trichocarpa and Z. mays. We aimed to develop an understanding of impact of long introns on the structure of individual genes. The number and length of exons was well conserved among the species compared but on average, P. glauca introns were longer and genes had four times more intronic sequence than Arabidopsis, and 2 times more than poplar and maize. However, pairwise comparisons of individual genes gave variable results and not all contrasts were statistically significant. Genes generally accumulated one or a few longer introns in species with larger genomes but the position of long introns was variable between plant lineages. In P. glauca, highly expressed genes generally had more intronic sequence than tissue preferential genes. Comparisons with the Pinus taeda BACs and genome scaffolds showed a high conservation for position of long introns and for sequence of short introns. A survey of 1836 P. glauca genes obtained by sequence capture mostly containing introns <1 Kbp showed that repeated sequences were 10× more abundant in introns than in exons. CONCLUSION: Conifers have large amounts of intronic sequence per gene for seed plants due to the presence of few long introns and repetitive element sequences are ubiquitous in their introns. Results indicate a complex landscape of intron sizes and distribution across taxa and between genes with different expression profiles.


Assuntos
Genes de Plantas , Íntrons/genética , Picea/genética , Sequência de Bases , Bases de Dados Genéticas , Evolução Molecular , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Pinus/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico
13.
J Exp Bot ; 65(2): 495-508, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336492

RESUMO

Redundancy and competition between R2R3-MYB activators and repressors on common target genes has been proposed as a fine-tuning mechanism for the regulation of plant secondary metabolism. This hypothesis was tested in white spruce [Picea glauca (Moench) Voss] by investigating the effects of R2R3-MYBs from different subgroups on common targets from distinct metabolic pathways. Comparative analysis of transcript profiling data in spruces overexpressing R2R3-MYBs from loblolly pine (Pinus taeda L.), PtMYB1, PtMYB8, and PtMYB14, defined a set of common genes that display opposite regulation effects. The relationship between the closest MYB homologues and 33 putative target genes was explored by quantitative PCR expression profiling in wild-type P. glauca plants during the diurnal cycle. Significant Spearman's correlation estimates were consistent with the proposed opposite effect of different R2R3-MYBs on several putative target genes in a time-related and tissue-preferential manner. Expression of sequences coding for 4CL, DHS2, COMT1, SHM4, and a lipase thio/esterase positively correlated with that of PgMYB1 and PgMYB8, but negatively with that of PgMYB14 and PgMYB15. Complementary electrophoretic mobility shift assay (EMSA) and transactivation assay provided experimental evidence that these different R2R3-MYBs are able to bind similar AC cis-elements in the promoter region of Pg4CL and PgDHS2 genes but have opposite effects on their expression. Competitive binding EMSA experiments showed that PgMYB8 competes more strongly than PgMYB15 for the AC-I MYB binding site in the Pg4CL promoter. Together, the results bring a new perspective to the action of R2R3-MYB proteins in the regulation of distinct but interconnecting metabolism pathways.


Assuntos
Vias Biossintéticas , Genes de Plantas/genética , Lignina/metabolismo , Picea/genética , Picea/metabolismo , Proteínas de Plantas/metabolismo , Ácido Chiquímico/metabolismo , Sequência de Bases , Vias Biossintéticas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Pinus/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Ativação Transcricional/genética
14.
BMC Genomics ; 13: 434, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22931377

RESUMO

BACKGROUND: Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. RESULTS: An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. CONCLUSION: Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Picea/genética , Proteínas de Plantas/genética , Xilema/genética , Transporte Biológico , DNA Complementar/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Variação Genética , Tamanho do Genoma , Família Multigênica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/classificação , Análise de Sequência de RNA , Água/metabolismo
15.
New Phytol ; 180(4): 766-86, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18811621

RESUMO

One approach for investigating the molecular basis of wood formation is to integrate microarray profiling data sets and sequence analyses, comparing tree species with model plants such as Arabidopsis. Conifers may be included in comparative studies thanks to large-scale expressed sequence tag (EST) analyses, which enable the development of cDNA microarrays with very significant genome coverage. A microarray of 10,400 low-redundancy sequences was designed starting from white spruce (Picea glauca (Moench.) Voss) cDNAs. Computational procedures that were developed to ensure broad transcriptome coverage and efficient PCR amplification were used to select cDNA clones, which were re-sequenced in the microarray manufacture process. White spruce transcript profiling experiments that compared secondary xylem to phloem and needles identified 360 xylem-preferential gene sequences. The functional annotations of all differentially expressed sequences were highly consistent with the results of similar analyses carried out in angiosperm trees and herbaceous plants. Computational analyses comparing the spruce microarray sequences and core xylem gene sets from Arabidopsis identified 31 transcripts that were highly conserved in angiosperms and gymnosperms, in terms of both sequence and xylem expression. Several other spruce sequences have not previously been linked to xylem differentiation (including genes encoding TUBBY-like domain proteins (TLPs) and a gibberellin insensitive (gai) gene sequence) or were shown to encode proteins of unknown function encompassing diverse conserved domains of unknown function.


Assuntos
Perfilação da Expressão Gênica , Genes de Plantas , Picea/genética , Xilema/genética , Arabidopsis/genética , Sequência de Bases , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Análise em Microsséries/métodos , Família Multigênica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Floema/genética , Folhas de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência , Transcrição Gênica , Árvores/genética
16.
Palliat Support Care ; 4(3): 219-37, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17066964

RESUMO

OBJECTIVE: Depression is particularly prevalent in patients with advanced cancer. Cognitive therapy (CT) is an empirically supported treatment for depression in the general population. However, efficacy remains to be demonstrated in patients with advanced cancer. A prior controlled trial of CT in a group format showed improvements in depression, mood disturbance, and self-esteem; however, these effects were not maintained over time. Studies examining the efficacy of individual format CT interventions that may ensure more long-term maintenance of benefits are necessary. This study assessed the efficacy of CT for depression administered individually in women with metastatic breast cancer and its effect on immune function. METHOD: Forty-five women were randomly assigned to either individual CT or to a waiting-list control (WLC) condition. CT was composed of eight weekly sessions of CT and three booster sessions administered at 3-week intervals following the end of treatment. RESULTS: Patients treated with CT had significantly lower scores on the Hamilton Depression Rating Scale at posttreatment compared to untreated patients. Pooled data from both groups indicated significant reductions of depressive symptoms from pre- to posttreatment, as well as reduction of associated symptoms including anxiety, fatigue, and insomnia symptoms. These effects were well sustained at the 3- and 6-month follow-up evaluations. CT for depression did not appear to have a significant impact on immune functioning. SIGNIFICANCE OF RESULTS: Findings of this study support the efficacy of CT for depression in this population and suggest that the administration of individual and booster sessions after treatment termination may be instrumental in sustaining the treatment effects over time.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/psicologia , Terapia Cognitivo-Comportamental/métodos , Depressão/imunologia , Depressão/terapia , Neoplasias da Mama/patologia , Citocinas/metabolismo , Interpretação Estatística de Dados , Depressão/etiologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Pessoa de Meia-Idade , Metástase Neoplásica/imunologia , Escalas de Graduação Psiquiátrica , Fatores de Tempo , Resultado do Tratamento , Listas de Espera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...