Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(1): 45-53, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113213

RESUMO

We have developed genetic tools for the atypical bacterium Acholeplasma laidlawii. A. laidlawii is a member of the class Mollicutes, which lacks cell walls, has small genomes, and has limited metabolic capabilities, requiring many metabolites from their hosts. Several of these traits have facilitated the development of genome transplantation for some Mollicutes, consequently enabling the generation of synthetic cells. Here, we propose the development of genome transplantation for A. laidlawii. We first investigated a donor-recipient relationship between two strains, PG-8A and PG-8195, through whole-genome sequencing. We then created multihost shuttle plasmids and used them to optimize an electroporation protocol. We also evolved a superior strain for DNA uptake via electroporation. We created a PG-8A donor strain with a Tn5 transposon carrying a tetracycline resistance gene. These tools will enhance Acholeplasma research and accelerate the effort toward creating A. laidlawii strains with synthetic genomes.


Assuntos
Acholeplasma laidlawii , Acholeplasma laidlawii/genética , Acholeplasma laidlawii/metabolismo , Plasmídeos/genética , Fenótipo
2.
PeerJ ; 10: e13607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811822

RESUMO

Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes.


Assuntos
Diatomáceas , Genoma Mitocondrial , Diatomáceas/genética , Genoma Mitocondrial/genética , Telômero/genética
3.
Sci Rep ; 12(1): 7010, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487958

RESUMO

The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.


Assuntos
COVID-19 , Diatomáceas , Animais , COVID-19/diagnóstico , Diatomáceas/genética , Diatomáceas/metabolismo , Histidina , Humanos , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Pandemias , Fosfatos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo
4.
ACS Synth Biol ; 11(3): 1068-1076, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35254818

RESUMO

Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.


Assuntos
Deinococcus , Deinococcus/genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Plasmídeos/genética
5.
Biology (Basel) ; 9(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114477

RESUMO

Algae are attractive organisms for biotechnology applications such as the production of biofuels, medicines, and other high-value compounds due to their genetic diversity, varied physical characteristics, and metabolic processes. As new species are being domesticated, rapid nuclear and organelle genome engineering methods need to be developed or optimized. To that end, we have previously demonstrated that the mitochondrial genome of microalgae Phaeodactylum tricornutum can be cloned and engineered in Saccharomyces cerevisiae and Escherichia coli. Here, we show that the same approach can be used to clone mitochondrial genomes of another microalga, Thalassiosira pseudonana. We have demonstrated that these genomes can be cloned in S. cerevisiae as easily as those of P. tricornutum, but they are less stable when propagated in E. coli. Specifically, after approximately 60 generations of propagation in E. coli, 17% of cloned T. pseudonana mitochondrial genomes contained deletions compared to 0% of previously cloned P. tricornutum mitochondrial genomes. This genome instability is potentially due to the lower G+C DNA content of T. pseudonana (30%) compared to P. tricornutum (35%). Consequently, the previously established method can be applied to clone T. pseudonana's mitochondrial genome, however, more frequent analyses of genome integrity will be required following propagation in E. coli prior to use in downstream applications.

6.
Sci Rep ; 10(1): 13879, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807825

RESUMO

The model diatom Phaeodactylum tricornutum is an attractive candidate for synthetic biology applications. Development of auxotrophic strains of P. tricornutum would provide alternative selective markers to commonly used antibiotic resistance genes. Here, using CRISPR/Cas9, we show successful editing of genes in the uracil, histidine, and tryptophan biosynthetic pathways. Nanopore long-read sequencing indicates that editing events are characterized by the occurrence of large deletions of up to ~ 2.7 kb centered on the editing site. The uracil and histidine-requiring phenotypes can be complemented by plasmid-based copies of the intact genes after curing of the Cas9-editing plasmid. Growth of uracil auxotrophs on media supplemented with 5-fluoroorotic acid and uracil results in loss of the complementing plasmid, providing a facile method for plasmid curing with potential applications in strain engineering and CRISPR editing. Metabolomic characterization of uracil auxotrophs revealed changes in cellular orotate concentrations consistent with partial or complete loss of orotate phosphoribosyltransferase activity. Our results expand the range of P. tricornutum auxotrophic strains and demonstrate that auxotrophic complementation markers provide a viable alternative to traditionally used antibiotic selection markers. Plasmid-based auxotrophic markers should expand the range of genome engineering applications and provide a means for biocontainment of engineered P. tricornutum strains.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Sistemas CRISPR-Cas , Proteínas do Sistema Complemento/genética , Deleção de Genes , Edição de Genes/métodos , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Engenharia Genética , Histidina/biossíntese , Orotato Fosforribosiltransferase/metabolismo , Triptofano/biossíntese , Uracila/biossíntese
7.
BMC Bioinformatics ; 20(1): 580, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729955

RESUMO

BACKGROUND: Differential abundance analysis is widely used with high-throughput sequencing data to compare gene abundance or expression between groups of samples. Many software packages exist for this purpose, but each uses a unique set of statistical assumptions to solve problems on a case-by-case basis. These software packages are typically difficult to use for researchers without command-line skills, and software that does offer a graphical user interface do not use a compositionally valid method. RESULTS: omicplotR facilitates visual exploration of omic datasets for researchers with and without prior scripting knowledge. Reproducible visualizations include principal component analysis, hierarchical clustering, MA plots and effect plots. We demonstrate the functionality of omicplotR using a publicly available metatranscriptome dataset. CONCLUSIONS: omicplotR provides a graphical user interface to explore sequence count data using generalizable compositional methods, facilitating visualization for investigators without command-line experience.


Assuntos
Bases de Dados como Assunto , Genômica , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Componente Principal
8.
RNA Biol ; 16(11): 1574-1585, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31407949

RESUMO

Transfer RNAs are required to translate genetic information into proteins as well as regulate other cellular processes. Nucleotide changes in tRNAs can result in loss or gain of function that impact the composition and fidelity of the proteome. Despite links between tRNA variation and disease, the importance of cytoplasmic tRNA variation has been overlooked. Using a custom capture panel, we sequenced 605 human tRNA-encoding genes from 84 individuals. We developed a bioinformatic pipeline that allows more accurate tRNA read mapping and identifies multiple polymorphisms occurring within the same variant. Our analysis identified 522 unique tRNA-encoding sequences that differed from the reference genome from 84 individuals. Each individual had ~66 tRNA variants including nine variants found in less than 5% of our sample group. Variants were identified throughout the tRNA structure with 17% predicted to enhance function. Eighteen anticodon mutants were identified including potentially mistranslating tRNAs; e.g., a tRNASer that decodes Phe codons. Similar engineered tRNA variants were previously shown to inhibit cell growth, increase apoptosis and induce the unfolded protein response in mammalian cell cultures and chick embryos. Our analysis shows that human tRNA variation has been underestimated. We conclude that the large number of tRNA genes provides a buffer enabling the emergence of variants, some of which could contribute to disease.


Assuntos
Variação Genética , RNA de Transferência/genética , Análise de Sequência de RNA/métodos , Anticódon , Feminino , Humanos , Masculino , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Transferência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...