Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 166(3): 513-521, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261142

RESUMO

BACKGROUND: MRI treatment response assessment maps (TRAMs) were introduced to distinguish recurrent malignant glioma from therapy related changes. TRAMs are calculated with two contrast-enhanced T1-weighted sequences and reflect the "late" wash-out (or contrast clearance) and wash-in of gadolinium. Vital tumor cells are assumed to produce a wash-out because of their high turnover rate and the associated hypervascularization, whereas contrast medium slowly accumulates in scar tissue. To examine the real value of this method, we compared TRAMs with the pathology findings obtained after a second biopsy or surgery when recurrence was suspected. METHODS: We retrospectively evaluated TRAMs in adult patients with histologically demonstrated glioblastoma, contrast-enhancing tissue and a pre-operative MRI between January 1, 2017, and December 31, 2022. Only patients with a second biopsy or surgery were evaluated. Volumes of the residual tumor, contrast clearance and contrast accumulation before the second surgery were analyzed. RESULTS: Among 339 patients with mGBM who underwent MRI, we identified 29 repeated surgeries/biopsies in 27 patients 59 ± 12 (mean ± standard deviation) years of age. Twenty-eight biopsies were from patients with recurrent glioblastoma histology, and only one was from a patient with radiation necrosis. We volumetrically evaluated the 29 pre-surgery TRAMs. In recurrent glioblastoma, the ratio of wash-out volume to tumor volume was 36 ± 17% (range 1-73%), and the ratio of the wash-out volume to the sum of wash-out and wash-in volumes was 48 ± 21% (range 22-92%). For the one biopsy with radiation necrosis, the ratios were 42% and 54%, respectively. CONCLUSIONS: Typical recurrent glioblastoma shows a > 20%ratio of the wash-out volume to the sum of wash-out and wash-in volumes. The one biopsy with radiation necrosis indicated that such necrosis can also produce high wash-out in individual cases. Nevertheless, the additional information provided by TRAMs increases the reliability of diagnosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Meios de Contraste , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/patologia , Imageamento por Ressonância Magnética/métodos , Necrose/diagnóstico por imagem
2.
Front Neurol ; 12: 700164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276549

RESUMO

Objective: Dissecting aneurysms (DAs) of the vertebrobasilar territory manifesting with subarachnoid hemorrhage (SAH) are associated with significant morbi-mortality, especially in the case of re-hemorrhage. Sufficient reconstruction of the affected vessel is paramount, in particular, if a dominant vertebral artery (VA) is impacted. Reconstructive options include stent-assisted coiling and flow diversion (FD). The latter is technically less challenging and does not require catheterization of the fragile aneurysm. Our study aims to report a multicentric experience with FD for reconstruction of DA in acute SAH. Materials and Methods: This retrospective study investigated 31 patients (age: 30-78 years, mean 55.5 years) who had suffered from SAH due to a DA of the dominant VA. The patients were treated between 2010 and 2020 in one of the following German neurovascular centers: University Hospital Leipzig, Katharinenhospital Stuttgart, BG Hospital Bergmannstrost Halle/Saale, and Heinrich-Braun-Klinikum Zwickau. Clinical history, imaging, implanted devices, and outcomes were reviewed for the study. Results: Reconstruction with flow-diverting stents was performed in all cases. The p64 was implanted in 14 patients; one of them required an additional balloon-expandable stent to reconstruct severe stenosis in the target segment. One case demanded additional liquid embolization after procedural rupture, and in one case, p64 was combined with a PED. Further 13 patients were treated exclusively with the PED. The p48MW-HPC was used in two patients, one in combination with two additional Silk Vista Baby (SVB). Moreover, one patient was treated with a single SVB, one with a SILK+. Six patients died [Glasgow Outcome Scale (GOS) 1]. Causes of death were periprocedural re-hemorrhage, thrombotic occlusion of the main pulmonary artery, and delayed parenchymal hemorrhage. The remaining three patients died in the acute-subacute phase related to the severity of the initial hemorrhage and associated comorbidities. One patient became apallic (GOS 2), whereas two patients had severe disability (GOS 3) and four had moderate disability (GOS 4). Eighteen patients showed a complete recovery (GOS 5). Conclusion: Reconstruction of VA-DA in acute SAH with flow-diverting stents is a promising approach. However, the severity of the condition is reflected by high overall morbi-mortality, even despite technically successful endovascular treatment.

3.
Front Oncol ; 10: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158691

RESUMO

Background: Low-grade gliomas (LGG) in adults are usually slow growing and frequently asymptomatic brain tumors, originating from glial cells of the central nervous system (CNS). Although regarded formally as "benign" neoplasms, they harbor the potential of malignant transformation associated with high morbidity and mortality. Their complex and unpredictable tumor biology requires a reliable and conclusive presurgical magnetic resonance imaging (MRI). A promising and emerging MRI approach in this context is histogram based apparent diffusion coefficient (ADC) profiling, which recently proofed to be capable of providing prognostic relevant information in different tumor entities. Therefore, our study investigated whether histogram profiling of ADC distinguishes grade I from grade II glioma, reflects the proliferation index Ki-67, as well as the IDH (isocitrate dehydrogenase) mutation and MGMT (methylguanine-DNA methyl-transferase) promotor methylation status. Material and Methods: Pre-treatment ADC volumes of 26 LGG patients were used for histogram-profiling. WHO-grade, Ki-67 expression, IDH mutation, and MGMT promotor methylation status were evaluated. Comparative and correlative statistics investigating the association between histogram-profiling and neuropathology were performed. Results: Almost the entire ADC profile (p25, p75, p90, mean, median) was significantly lower in grade II vs. grade I gliomas. Entropy, as second order histogram parameter of ADC volumes, was significantly higher in grade II gliomas compared with grade I gliomas. Mean, maximum value (ADCmax) and the percentiles p10, p75, and p90 of ADC histogram were significantly correlated with Ki-67 expression. Furthermore, minimum ADC value (ADCmin) was significantly associated with MGMT promotor methylation status as well as ADC entropy with IDH-1 mutation status. Conclusions: ADC histogram-profiling is a valuable radiomic approach, which helps differentiating tumor grade, estimating growth kinetics and probably prognostic relevant genetic as well as epigenetic alterations in LGG.

4.
Magn Reson Imaging ; 63: 244-249, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425811

RESUMO

BACKGROUND AND PURPOSE: Advanced imaging analysis for the prediction of tumor biology and modelling of clinically relevant parameters using computed imaging features is part of the emerging field of radiomics research. Here we test the hypothesis that a machine learning approach can distinguish grade 1 from higher gradings in meningioma patients using radiomics features derived from a heterogenous multicenter dataset of multi-paramedic MRI. METHODS: A total of 138 patients from 5 international centers that underwent MRI prior to surgical resection of intracranial meningiomas were included. Segmentation was performed manually on co-registered multi-parametric MR images using apparent diffusion coefficient (ADC) maps, T1-weighted (T1), post-contrast T1-weighted (T1c), subtraction maps (Sub, T1c - T1), T2-weighted fluid-attenuated inversion recovery (FLAIR) and T2-weighted (T2) images. Feature selection was performed and using cross-validation to separate training from testing data, four machine learning classifiers were scored on combinations of MRI modalities: random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM) and multilayer perceptron (MLP). RESULTS: The best AUC of 0.97 (1.0 and 0.97 for sensitivity and specificity) was observed for the combination of ADC, ADC of the peritumoral edema, T1, T1c, Sub and FLAIR-derived features using only 16 of the 10,914 possible features and XGBoost. CONCLUSIONS: Machine learning using radiomics features derived from multi-parametric MRI is capable of high AUC scores with high sensitivity and specificity in classifying meningiomas between low and higher gradings despite heterogeneous protocols across different centers. Feature selection can be performed effectively even when extracting a large amount of data for radiomics fingerprinting.


Assuntos
Imagem de Difusão por Ressonância Magnética , Aprendizado de Máquina , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Idoso , Área Sob a Curva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
5.
Transl Oncol ; 11(5): 1074-1079, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30005209

RESUMO

Low grade meningiomas have better prognosis than high grade meningiomas. The aim of this study was to measure apparent diffusion coefficient (ADC) histogram analysis parameters in different meningiomas in a large multicenter sample and to analyze the possibility of several parameters for predicting tumor grade and proliferation potential. Overall, 148 meningiomas from 7 institutions were evaluated in this retrospective study. Grade 1 lesions were diagnosed in 101 (68.2%) cases, grade 2 in 41 (27.7%) patients, and grade 3 in 6 (4.1%) patients. All tumors were investigated by MRI (1.5 T scanner) by using diffusion weighted imaging (b values of 0 and 1000 s/mm2). For every lesion, the following parameters were calculated: mean ADC, maximum ADC, minimum ADC, median ADC, mode ADC, ADC percentiles P10, P25, P75, P90, kurtosis, skewness, and entropy. The comparison of ADC values was performed by Mann-Whitney-U test. Correlation between different ADC parameters and KI 67 was calculated by Spearman's rank correlation coefficient. Grade 2/3 meningiomas showed statistically significant lower ADC histogram analysis parameters in comparison to grade 1 tumors, especially ADC median. A threshold value of 0.82 for ADC median to predict tumor grade was estimated (sensitivity = 82.2%, specificity = 63.8%, accuracy = 76.4%, positive and negative predictive values were 83% and 62.5%, respectively). All ADC parameters except maximum ADC showed weak significant correlations with KI 67, especially ADC P25 (P = -.340, P = .0001).

6.
Transl Oncol ; 11(4): 957-961, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29909365

RESUMO

BACKGROUND: Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. MATERIAL AND METHODS: Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. RESULTS: None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. CONCLUSIONS: Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas.

7.
Oncotarget ; 9(26): 18148-18159, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719596

RESUMO

BACKGROUND: Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. METHODS: 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. RESULTS: All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10-5 mm2 × s-1. CONCLUSIONS: ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

8.
Mol Imaging Biol ; 20(4): 632-640, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29392542

RESUMO

PURPOSE: Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. PROCEDURES: Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. RESULTS: The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. CONCLUSIONS: ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.


Assuntos
Meningioma/diagnóstico , Meningioma/patologia , Receptores de Progesterona/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Homólogo 5 da Proteína Cromobox , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Meningioma/diagnóstico por imagem , Pessoa de Meia-Idade , Gradação de Tumores , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...