Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Mod Pathol ; 37(10): 100565, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025405

RESUMO

Over the past years, insights in the cancer neuroscience field increased rapidly, and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin, and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n = 490) and an in-cohort validation population (n = 529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.5 (PGP9.5) to study the association between neuronal marker expression and clinicopathological characteristics. In addition, tumor and healthy colon tissues were stained for neuronal subtype markers, and their immunoreactivity in colorectal cancer (CRC) stroma was analyzed. NF-positive and PGP9.5-positive nerve fibers were found within the tumor stroma and mostly characterized by the neuronal subtype markers vasoactive intestinal peptide and neuronal nitric oxide synthase, suggesting that inhibitory neurons are the most prominent neuronal subtype in CRC. NF and PGP9.5 protein expression were not consistently associated with tumor stage, sublocation, differentiation grade, and median survival. NF immunoreactivity was associated with a worse CRC-specific survival in the study cohort (P = .025) independent of other prognostic factors (hazard ratio, 2.31; 95% CI, 1.33-4.03; P = .003), but these results were not observed in the in-cohort validation group. PGP9.5, in contrast, was associated with a worse CRC-specific survival in the in-cohort validation (P = .046) but not in the study population. This effect disappeared in multivariate analyses (hazard ratio, 0.81; 95% CI, 0.50-1.32; P = .393), indicating that this effect was dependent on other prognostic factors. This study demonstrates that the tumor stroma of CRC patients mainly harbors inhibitory neurons and that NF as a single marker is significantly associated with a poorer CRC-specific survival in the study cohort but necessitates future validation.

2.
J Am Heart Assoc ; 13(14): e034066, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979792

RESUMO

BACKGROUND: Atherosclerosis is highly prevalent in people with chronic kidney disease (CKD), including those receiving peritoneal dialysis (PD). Although it is lifesaving, PD induces profound systemic inflammation, which may aggravate atherosclerosis. Therefore, the hypothesis is that this PD-induced inflammation aggravates atherosclerosis via immune cell activation. METHODS AND RESULTS: ApoE-/- mice were subjected to a 5/6 nephrectomy to induce CKD. Three weeks later, mice were fed a high-cholesterol diet. Half of the nephrectomized mice then received daily peritoneal infusions of 3.86% Physioneal for 67 further days (CKD+PD) until the end of the experiment, and were compared with mice without CKD. Sham operated and PD-only mice were additional controls. CKD+PD mice displayed more severe atherosclerotic disease than control mice. Plaque area increased, and plaques were more advanced with a vulnerable phenotype typified by decreased collagen content and decreased fibrous cap thickness. Increased CD3+ T-cell numbers were present in plaques and perivascular adipose tissue of CKD and CKD+PD mice. Plaques of CKD+PD mice contained more iNOS+ immune cells. Spleens of CKD+PD mice showed more CD4+ central memory, terminally differentiated type 1 T-helper (Th1), Th17, and CX3C motif chemokine receptor 1+ (CX3CR1) CD4+ T-cells with less regulatory and effector T-cells. CONCLUSIONS: PD-fluid exposure in uremic mice potentiates systemic and vascular T-cell-driven inflammation and aggravates atherosclerosis. PD polarized CD4+ T-cells toward an inflammatory Th1/Th17 phenotype, and increased CX3CR1+ CD4+ T-cells, which are associated with vascular homing in CKD-associated atherosclerosis. Targeting CD4+ T-cell activation and CX3CR1+ polarization has the potential to attenuate atherosclerosis in PD patients.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Diálise Peritoneal , Insuficiência Renal Crônica , Uremia , Animais , Aterosclerose/patologia , Aterosclerose/etiologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/genética , Uremia/imunologia , Uremia/metabolismo , Diálise Peritoneal/efeitos adversos , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Camundongos Knockout para ApoE , Camundongos , Placa Aterosclerótica , Masculino , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Nefrectomia
3.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38943249

RESUMO

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos HLA-E , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Deleção de Genes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Citotoxicidade Imunológica
4.
Sci Rep ; 14(1): 3686, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355947

RESUMO

The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.


Assuntos
Sistema Nervoso Entérico , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Proteínas de Transporte/metabolismo , Plexo Mientérico , Camundongos Transgênicos , Colo
5.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338654

RESUMO

Extracellular histones have been shown to act as DAMPs in a variety of inflammatory diseases. Moreover, they have the ability to induce cell death. In this study, we show that M6229, a low-anticoagulant fraction of unfractionated heparin (UFH), rescues rats that were challenged by continuous infusion of calf thymus histones at a rate of 25 mg histones/kg/h. Histone infusion by itself induced hepatic and homeostatic dysfunction characterized by elevated activity of hepatic enzymes (ASAT and ALAT) and serum lactate levels as well as by a renal dysfunction, which contributed to the significantly increased mortality rate. M6229 was able to restore normal levels of both hepatic and renal parameters at 3 and 9 mg M6229/kg/h and prevented mortality of the animals. We conclude that M6229 is a promising therapeutic agent to treat histone-mediated disease.


Assuntos
Injúria Renal Aguda , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ratos , Animais , Histonas/metabolismo , Heparina/farmacologia , Anticoagulantes/farmacologia , Rim/metabolismo , Injúria Renal Aguda/tratamento farmacológico
6.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299357

RESUMO

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Assuntos
Doenças da Aorta , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aorta/diagnóstico por imagem , Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Glicerofosfolipídeos/metabolismo , Fatores de Risco de Doenças Cardíacas
7.
Redox Biol ; 70: 103054, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38309122

RESUMO

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Succinatos/farmacologia , Macrófagos/metabolismo
8.
Macromol Biosci ; 24(1): e2300005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36934315

RESUMO

Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH ≥ 9 results in a constant viscosity of 0.1 Pa·s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Injeções Intraperitoneais , Injeções
9.
Life (Basel) ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895458

RESUMO

The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing. Forty-two healthy Wistar rats received a colonic end-to-end anastomosis, after which 6 animals received an intraperitoneal injection with saline, 18 with unloaded hydrogel and 18 with MMC-loaded hydrogel. After 7 days, animals were euthanized, and the anastomotic adhesion and leakage score were measured as primary outcome. Secondary outcomes were bursting pressure, histological anastomosis evaluation and body weight changes. Twenty-two rats completed the follow-up period (saline: n = 6, unloaded hydrogel: n = 10, MMC-loaded hydrogel: n = 6) and were included in the analysis. A trend towards significance was found for anastomotic leakage score between the rats receiving saline and unloaded hydrogel after multiple-comparison correction (p = 0.020, α = 0.0167). No significant differences were found for all other outcomes. The main reason for drop-out in this study was intestinal blood loss. Although the preliminary results suggest that MMC-loaded or unloaded hydrogel does not influence anastomotic healing, the intestinal blood loss observed in a considerable number of animals receiving unloaded and MMC-loaded hydrogel implies that the injection of the hydrogel under the studied conditions is not safe in the current rodent model and warrants further optimalisation of the hydrogel.

10.
BJS Open ; 7(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37855751

RESUMO

BACKGROUND: Understanding the early processes underlying intestinal anastomotic healing is crucial to comprehend the pathophysiology of anastomotic leakage. The aim of this study was to assess normal intestinal anastomotic healing and disturbed healing in rats to investigate morphological, cellular and intrinsic molecular changes in the anastomotic tissue. METHOD: Anastomoses were created in two groups of Wistar rats, using four sutures or 12 sutures to mimic anastomotic leakage and anastomotic healing respectively. At 6, 12, 24 hours and 2, 3, 5 and 7 days, anastomotic tissue was assessed macroscopically using the anastomotic complication score and histologically using the modified Ehrlich-Hunt score. Transcriptome analysis was performed to assess differences between anastomotic leakage and anastomotic healing at the first three time points to find affected genes and biological processes. RESULTS: Ninety-eight rats were operated on (49 animals in the anastomotic leakage and 49 in the anastomotic healing group) and seven rats analysed at each time point. None of the animals with 12 sutures developed anastomotic leakage macroscopically, whereas 35 of the 49 animals with four sutures developed anastomotic leakage. Histological analysis showed increasing influx of inflammatory cells up to 3 days in anastomotic healing and up to 7 days in anastomotic leakage, and this increase was significantly higher in anastomotic leakage at 5 (P = 0.041) and 7 days (P = 0.003). Transcriptome analyses revealed large differences between anastomotic leakage and anastomotic healing at 6 and 24 hours, mainly driven by an overall downregulation of genes in anastomotic leakage. CONCLUSION: Transcriptomic analyses revealed large differences between normal and disturbed healing at 6 hours after surgery, which might eventually serve as early-onset biomarkers for anastomotic leakage.


Assuntos
Fístula Anastomótica , Transcriptoma , Ratos , Humanos , Animais , Fístula Anastomótica/etiologia , Ratos Wistar , Anastomose Cirúrgica/efeitos adversos , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA