Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124912, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39142263

RESUMO

In recent years, hyperspectral imaging combined with machine learning techniques has garnered significant attention for its potential in assessing fruit maturity. This study proposes a method for predicting strawberry fruit maturity based on the harvest time. The main features of this study are as follows. 1) Selection of wavelength band associated with strawberry growth season; 2) Extraction of efficient parameters to predict strawberry maturity 3) Prediction of internal quality attributes of strawberries using extracted parameters. In this study, experts cultivated strawberries in a controlled environment and performed hyperspectral measurements and organic analyses on the fruit with minimal time delay to facilitate accurate modeling. Data augmentation techniques through cross-validation and interpolation were effective in improving model performance. The four parameters included in the model and the cumulative value of the model were available for quality prediction as additional parameters. Among these five parameter candidates, two parameters with linearity were finally identified. The predictive outcomes for firmness, soluble solids content, acidity, and anthocyanin levels in strawberry fruit, based on the two identified parameters, are as follows: The first parameter, ps, demonstrated RMSE performances of 1.0 N, 2.3 %, 0.1 %, and 2.0 mg per 100 g fresh fruit for firmness, soluble solids content, acidity, and anthocyanin, respectively. The second parameter, p3, showed RMSE performances of 0.6 N, 1.2 %, 0.1 %, and 1.8 mg per 100 g fresh fruit, respectively. The proposed non-destructive analysis method shows the potential to overcome the challenges associated with destructive testing methods for assessing certain internal qualities of strawberry fruit.

2.
Sci Rep ; 14(1): 15423, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965285

RESUMO

Leaf mustard (Brassica juncea L.) is explored for its biofumigant properties, derived from its secondary metabolites, particularly allyl isothiocyanate (AITC), produced during the enzymatic breakdown of glucosinolates like sinigrin. The research examines eight leaf mustard cultivars developed in Yeosu city, South Korea, focusing on their genetic characteristics, AITC concentration and nitriles formation rates from glucosinolates. Results indicate that the allelopathic effects, largely dependent on AITC concentration and enzymatic activity, vary across cultivar. Sinigrin and AITC constitute 79% and 36%, respectively, of glucosinolate and its hydrolysis products. The cultivar 'Nuttongii' demonstrates significant potential for inhibiting weeds, exhibiting the highest AITC concentration at 27.47 ± 6.46 µmole g-1 These outcomes highlight the importance of selecting mustard cultivars for biofumigation based on their glucosinolate profiles and hydrolysis product yields. The study also identifies a significant genetic influence on AITC and nitrile formation, suggesting that epithiospecifier protein modulation could enhance both allelopathic and other beneficial effects. Collectively, the research underscores the promise of mustard as a sustainable, environmentally friendly alternative to traditional herbicides.


Assuntos
Glucosinolatos , Isotiocianatos , Mostardeira , Nitrilas , Glucosinolatos/metabolismo , Glucosinolatos/química , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Nitrilas/química , Mostardeira/metabolismo , Mostardeira/genética , República da Coreia , Alelopatia
3.
Front Plant Sci ; 15: 1360050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562564

RESUMO

Introduction: The strawberry industry in South Korea has witnessed a significant 65% growth over the past decade, surpassing other fruits and vegetables in production value. While sweetness and acidity are well-recognized flavor determinants, the role of volatile organic compounds (VOCs) in defining the desirable flavor profiles of strawberries is also crucial. However, existing research has predominantly concentrated on a limited range of commercial cultivars, neglecting the broader spectrum of strawberry varieties. Methods: This study embarked on developing a comprehensive VOC database for a diverse array of strawberry cultivars sourced both domestically and internationally. A total of 61 different strawberry cultivars from Korea (45), the USA (7), Japan (8), and France (1) were analyzed for their VOC content using Tenax TA Thermo Desorption tubes and Gas Chromatography-Mass Spectrometry (GC-MS). In addition to VOC profiling, heritability was assessed using one-way ANOVA to compare means among multiple groups, providing insights into the genetic basis of flavor differences. Results and discussion: The analysis identified 122 compounds categorized into esters, alcohols, terpenes, and lactones, with esters constituting the majority (46.5%) of total VOCs in Korean cultivars. 'Arihyang', 'Sunnyberry', and 'Kingsberry' exhibited the highest diversity of VOCs detected (97 types), whereas 'Seolhong' showed the highest overall concentration (57.5mg·kg-1 FW). Compared to the USA cultivars, which were abundant in γ-decalactone (a peach-like fruity aroma), most domestic cultivars lacked this compound. Notably, 'Misohyang' displayed a high γ-decalactone content, highlighting its potential as breeding germplasm to improve flavor in Korean strawberries. The findings underscore the importance of a comprehensive VOC analysis across different strawberry cultivars to understand flavor composition. The significant variation in VOC content among the cultivars examined opens avenues for targeted breeding strategies. By leveraging the distinct VOC profiles, particularly the presence of γ-decalactone, breeders can develop new strawberry varieties with enhanced flavor profiles, catering to consumer preferences for both domestic and international markets.

4.
Chemosphere ; 323: 138202, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36849021

RESUMO

Phytochemical is considered an alternative method for cyanobacterial bloom control in aquatic environments. When cyanobacteria are treated with anti-algal materials produced from plant tissues, they tend to exhibit growth inhibition or necrosis of cells. These different anti-algal responses have not been well discussed, and thus, the modes of anti-algal action in cyanobacteria remain obscure. In this study, transcriptomic and biochemical researches were conducted to understand the mechanisms of cyanobacterial growth inhibition and necrosis in harmful cyanobacterial cells exposed to allelopathic materials. The cyanobacteria Microcystis aeruginosa was treated with aqueous extracts of walnut husk, rose leaf, and kudzu leaf. Walnut husk and rose leaf extracts induced mortality of cyanobacterial population with cell necrosis, whereas kudzu leaf extract exhibited poorly grown cells with shrunk size. Through RNA sequencing, it was revealed that the necrotic extracts significantly downregulated critical genes in enzymatic chain reactions for carbohydrate assembly in the carbon fixation cycle and peptidoglycan synthesis. Compared to the necrotic extract treatment, expression of several genes related to DNA repair, carbon fixation, and cell reproduction was less interrupted by the kudzu leaf extract. Biochemical analysis of cyanobacterial regrowth was performed using gallotannin and robinin. Gallotannin was identified as the major anti-algal compound in walnut husk and rose leaf affecting cyanobacterial necrosis, whereas robinin, which is the typical chemical in kudzu leaf, was associated with growth inhibition of cyanobacterial cells. These combinational studies using RNA sequencing and regrowth assays provided evidence supporting the allelopathic effects of plant-derived materials on cyanobacterial control. Furthermore, our findings suggest novel algicidal scenarios with different responses in the cyanobacterial cells depending on the type of anti-algal compounds.


Assuntos
Cianobactérias , Microcystis , Humanos , Taninos , Taninos Hidrolisáveis , Extratos Vegetais/farmacologia , Necrose , Proliferação Nociva de Algas
5.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624795

RESUMO

Faba leaves are an unusual vegetable which contain not only a range of functional phytochemicals, but also certain undesirable flavors, which limit their consumption. In this study, several cooking methods (microwaving, roasting, steaming, and boiling), which are expected to reduce the odd flavors, were evaluated in terms of both health benefit effects and odd flavor factors, including antioxidant activities and the content of non-volatile and volatile organic compounds (VOCs). A cooking time of 5 min was selected because of the high content of l-dopa (l-3,4-dihydroxyphenylalanine) and aim of reducing the undesirable flavors of the cooked faba leaves. Microwaving and steaming significantly increased the l-dopa content by 24% and 19%, respectively. Roasting specifically increased the content of flavonols, exhibiting a 28% increase of kaempferol-3-O-arabinoside-7-O-rhamnoside, representatively, whereas boiling decreased about 50% of most phytochemicals evaluated. Microwaving and steaming treatments significantly increased the antioxidant activities. The l-dopa content and antioxidant activities of the processed faba leaves were strongly positively correlated with either an R2 = 0.863 of DPPH radical scavenging activity or an R2 = 0.856 value of ABTS radical scavenging activity, showing that l-dopa was a key antioxidant. All cooking methods potentially improved the flavor of the cooked faba leaves compared with that of the fresh leaves, because they significantly reduced the contents of VOCs such as alcohols, aldehydes, and ketones. These VOCs were the main components (>90%) in the fresh leaves. Adverse aromatic hydrocarbons were newly formed by the microwaving treatment, typically producing p-xylene, which is known to be a harmful dose-dependent compound, but they were not detected in leaves processed by the other cooking methods; therefore, although microwaving efficiently increased antioxidant activity, the chemical safety of the aromatic hydrocarbons produced need further study.

6.
Plants (Basel) ; 11(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448731

RESUMO

With allelopathic composts, potential merits for preventing initial weed infestations have been observed in crop transplantation. However, previous studies have rarely investigated whether high temperatures, generated during composting, decrease allelopathic ability. This study evaluated the thermal allelopathic effect of two coniferous plants (Pinus densiflora and P. koraiensis) on Brassica napus germination and seedling growth using their characterized allelochemical destinations. The 90 °C dry treatment of P. densiflora extract exhibited stronger inhibitory effect on germination than its 30 °C dry treatment. In a range from 0.25 to 1 mg mL-1, the germination rate was decreased to 38.1 and 64.3% of control with P. densiflora extract dried at 90 and 30 °C, respectively. However, P. koraiensis showed potent inhibition of the germination process with no statistical difference in inhibitory effects regardless of the dry temperature. Regarding B. napus seedling root growth, the allelopathic effects of aqueous extracts of both conifers were not reduced with the 90 °C treatment, but it was lost in seedling shoot growth. GC-MS/MS confirmed that high temperature treatment drastically decreased volatile contents to 53.2% in P. densiflora, resulting in reduced allelopathic abilities. However, a relatively lower decrease to 83.1% in volatiles of P. koraiensis accounts for less loss of the root-specific inhibitory effect on B. napus seedlings even after 90 °C treatment. Foliar tissues of both conifers with species-specific thermal resistance have potentially valuable functions regarding allelopathic use in horticultural compost processing ingredients, demonstrating their weed control ability during the early cultivation season where crops are transplanted in the facilitated area.

7.
Food Chem ; 303: 125376, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442900

RESUMO

This study investigated the effects of persistent ultraviolet B (UV-B) irradiation on isoflavone accumulation in soybean sprouts. Three malonyl isoflavones were increased by UV-B. Malonylgenistin specifically accumulated upon UV-B exposure, whereas the other isoflavones were significantly increased under both dark conditions and UV-B exposure. The results of isoflavone accumulation to UV-B irradiation time were observed as following: acetyl glycitin rapidly increased and then gradually decreased; malonyl daidzin and malonyl genistin were highly accumulated within an intermediate period; genistein and daidzin were gradually maximized; daidzin, glycitin, genistein, and malonyl glycitin did not increase; and glycitin, acetyl daidzin, and acetyl genistin exhibited trace amounts. Transcriptional analysis of isoflavonoid biosynthetic genes demonstrated that most metabolic genes were highly activated in response to UV-B 24 and UV-B 36 treatments. In particular, it was found that GmCHS6, GmCHS7, and GmCHS8 genes among the eight known genes encoding chalcone synthase were specifically related to UV-B response.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/efeitos da radiação , Isoflavonas/metabolismo , Raios Ultravioleta , Aciltransferases/genética , Aciltransferases/metabolismo , Genisteína/metabolismo , Glucosídeos/metabolismo , Cinética , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Glycine max/genética , Glycine max/metabolismo , Tempo
8.
J Microbiol Biotechnol ; 27(8): 1386-1391, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28535610

RESUMO

The bioactivities of boxthron fruits, a source of oriental medicine, are well known, whereas phytochemical studies of the boxthorn stem are rare. In this study, the stem extract of boxthorn (Lycium chinense Miller) and its subfractions were evaluated for their effects on nitric oxide (NO) inhibition and procollagen type I peptide (PIP) synthesis. A phenolic amide isolated from the stem extract was also assayed for these effects. The compound, N-trans-feruloyltyramine, was identified by 1H, 13C, and 2D-nuclear magnetic resonance analyses. In NO inhibition, the chloroform fraction (CF) exhibited the strongest inhibitory activity (MIC50 = 24.69 µg/ml) among the subfractions of the ethanol extract (EE). N-transferuloyltyramine isolated from the CF showed strong NO inhibitory activity, presenting with an MIC50 of 31.36 µg/ml. The EE, CF, and N-trans-feruloyltyramine shown to have NO inhibition activity were assayed for the activity of PIP synthesis. The EE and CF showed relatively high PIP values of 38.8% and 24.21% at 100 µg/ml, respectively. The PIP value for 20 µg/ml N-trans-feruloyltyramine showed a 36% increase compared with the non-treated control, whereas that treated with 20 µg/ml ascorbic acid as a positive control showed a 13% increase. The results suggest that the proper stem extract of boxthorn stem could be efficiently used to produce good cosmetic effects.


Assuntos
Amidas/farmacologia , Colágeno Tipo I/biossíntese , Lycium/química , Óxido Nítrico/antagonistas & inibidores , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Amidas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA