Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112569, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37256750

RESUMO

Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.


Assuntos
RNA Longo não Codificante , Proteínas com Domínio T , Animais , Camundongos , Diferenciação Celular/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 50(13): 7367-7379, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35762231

RESUMO

Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.


Assuntos
Histonas , Metiltransferases/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante , Proteínas Repressoras/metabolismo , Animais , Cromatina , Código das Histonas , Histonas/genética , Histonas/metabolismo , Metilação , Metiltransferases/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/genética
5.
EMBO Rep ; 21(11): e51264, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32969152

RESUMO

Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs), yet the biological functions of most of them remain unknown. A particularly rich repertoire of lncRNAs found in mammalian brain and in the early embryo. We used RNA-seq and computational analysis to prioritize lncRNAs that may regulate commitment of pluripotent cells to a neuronal fate and perturbed their expression prior to neuronal differentiation. Knockdown by RNAi of two highly conserved and well-expressed lncRNAs, Reno1 (2810410L24Rik) and lnc-Nr2f1, decreased the expression of neuronal markers and led to massive changes in gene expression in the differentiated cells. We further show that the Reno1 locus forms increasing spatial contacts during neurogenesis with its adjacent protein-coding gene Bahcc1. Loss of either Reno1 or Bahcc1 leads to an early arrest in neuronal commitment, failure to induce a neuronal gene expression program, and to global reduction in chromatin accessibility at regions that are marked by the H3K4me3 chromatin mark at the onset of differentiation. Reno1 and Bahcc1 thus form a previously uncharacterized circuit required for the early steps of neuronal commitment.


Assuntos
Células-Tronco Embrionárias Murinas , RNA Longo não Codificante , Animais , Diferenciação Celular/genética , Camundongos , Neurogênese/genética , Neurônios , RNA Longo não Codificante/genética
6.
Nat Commun ; 11(1): 3498, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641823

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Genome Res ; 30(7): 1060-1072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32718982

RESUMO

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Assuntos
RNA Longo não Codificante/fisiologia , Processos de Crescimento Celular/genética , Movimento Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Canais de Potássio KCNQ/metabolismo , Anotação de Sequência Molecular , Oligonucleotídeos Antissenso , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno
8.
Nat Rev Genet ; 21(2): 102-117, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31729473

RESUMO

Long non-coding RNAs (lncRNAs) are diverse transcription products emanating from thousands of loci in mammalian genomes. Cis-acting lncRNAs, which constitute a substantial fraction of lncRNAs with an attributed function, regulate gene expression in a manner dependent on the location of their own sites of transcription, at varying distances from their targets in the linear genome. Through various mechanisms, cis-acting lncRNAs have been demonstrated to activate, repress or otherwise modulate the expression of target genes. We discuss the activities that have been ascribed to cis-acting lncRNAs, the evidence and hypotheses regarding their modes of action, and the methodological advances that enable their identification and characterization. The emerging principles highlight lncRNAs as transcriptional units highly adept at contributing to gene regulatory networks and to the generation of fine-tuned spatial and temporal gene expression programmes.


Assuntos
Regulação da Expressão Gênica/genética , RNA Longo não Codificante/genética , Animais , Redes Reguladoras de Genes , Humanos , Transcrição Gênica
9.
Nat Commun ; 10(1): 5317, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757954

RESUMO

Regulatory RNAs exert their cellular functions through RNA-binding proteins (RBPs). Identifying RNA-protein interactions is therefore key for a molecular understanding of regulatory RNAs. To date, RNA-bound proteins have been identified primarily through RNA purification followed by mass spectrometry. Here, we develop incPRINT (in cell protein-RNA interaction), a high-throughput method to identify in-cell RNA-protein interactions revealed by quantifiable luminescence. Applying incPRINT to long noncoding RNAs (lncRNAs), we identify RBPs specifically interacting with the lncRNA Firre and three functionally distinct regions of the lncRNA Xist. incPRINT confirms previously known lncRNA-protein interactions and identifies additional interactions that had evaded detection with other approaches. Importantly, the majority of the incPRINT-defined interactions are specific to individual functional regions of the large Xist transcript. Thus, we present an RNA-centric method that enables reliable identification of RNA-region-specific RBPs and is applicable to any RNA of interest.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Levivirus , Luciferases/metabolismo , Camundongos , Oligopeptídeos/metabolismo
10.
Nat Commun ; 10(1): 5092, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704914

RESUMO

Chromodomain helicase DNA binding protein 2 (Chd2) is a chromatin remodeller implicated in neurological disease. Here we show that Chaserr, a highly conserved long noncoding RNA transcribed from a region near the transcription start site of Chd2 and on the same strand, acts in concert with the CHD2 protein to maintain proper Chd2 expression levels. Loss of Chaserr in mice leads to early postnatal lethality in homozygous mice, and severe growth retardation in heterozygotes. Mechanistically, loss of Chaserr leads to substantially increased Chd2 mRNA and protein levels, which in turn lead to transcriptional interference by inhibiting promoters found downstream of highly expressed genes. We further show that Chaserr production represses Chd2 expression solely in cis, and that the phenotypic consequences of Chaserr loss are rescued when Chd2 is perturbed as well. Targeting Chaserr is thus a potential strategy for increasing CHD2 levels in haploinsufficient individuals.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Transtornos do Crescimento/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes Letais , Haploinsuficiência , Heterozigoto , Homozigoto , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas
11.
Cell Syst ; 7(5): 537-547.e3, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30447999

RESUMO

Active enhancers in mammals produce enhancer RNAs (eRNAs) that are bidirectionally transcribed, unspliced, and unstable. Enhancer regions are also enriched with long noncoding RNA (lncRNA) transcripts, which are typically spliced and substantially more stable. In order to explore the relationship between these two classes of RNAs, we analyzed DNase hypersensitive sites with evidence of bidirectional transcription, which we termed eRNA-producing centers (EPCs). EPCs found very close to transcription start sites of lncRNAs exhibit attributes of both enhancers and promoters, including distinctive DNA motifs and a characteristic chromatin landscape. These EPCs are associated with higher enhancer activity, driven at least in part by the presence of conserved, directional splicing signals that promote lncRNA production, pointing at a causal role of lncRNA processing in enhancer activity. Together, our results suggest that the conserved ability of some enhancers to produce lncRNAs augments their activity in a manner likely mediated through lncRNA maturation.


Assuntos
Elementos Facilitadores Genéticos , Splicing de RNA , RNA Longo não Codificante/metabolismo , Animais , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Sítio de Iniciação de Transcrição
12.
Nat Commun ; 7: 12209, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27406171

RESUMO

Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD-an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways.


Assuntos
Segregação de Cromossomos/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Divisão Celular/genética , Linhagem Celular Tumoral , Células HeLa , Humanos
13.
Anal Chem ; 82(20): 8390-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20849086

RESUMO

Three different sensing platforms for the analysis of telomerase activity in human cells are described. One sensing platform involves the label-free analysis of the telomerase activity by a field-effect-transistor (FET) device. The telomerase-induced extension of a primer associated with the gate of the FET device, in the presence of the nucleotide mixture dNTPs, alters the gate potential, and this allows the detection of telomerase extracted from 65 ± 10 293T (transformed human embryonic kidney) cells/µL. The second sensing platform involves the optical detection of telomerase using CdSe/ZnS quantum dots (QDs). The telomerase-stimulated telomerization of the primer-functionalized QDs in the presence of the nucleotide mixture dNTPs results in the synthesis of the G-rich telomeres. The stacking of hemin on the self-organized G-quadruplexes found on the telomers results in the electron transfer quenching of the QDs, thus providing an optical readout signal. This method enables the detection of telomerase originating from 270 ± 20 293T cells/µL. The third sensing method involves the amplified surface plasmon resonance (SPR) detection of telomerase activity. The telomerization of a primer associated with Au film-coated glass slides, in the presence of telomerase and the nucleotide mixture (dNTPs), results in the formation of telomeres on the surface, and these alter the dielectric properties of the surface resulting in a shift in the SPR spectrum. The hybridization of Au NPs functionalized with nucleic acids complementary to the telomere repeat units with the telomeres amplifies the SPR shifts due to the coupling between the local plasmon of the NPs and the surface plasmon wave. This method enables the detection of telomerase extracted from 18 ± 3 293T cells/µL.


Assuntos
Eletroquímica/métodos , Ressonância de Plasmônio de Superfície/métodos , Telomerase/análise , Eletrodos , Células HEK293 , Humanos , Pontos Quânticos , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...