Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 693682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336898

RESUMO

The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020.

2.
Radiat Prot Dosimetry ; 161(1-4): 190-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24030144

RESUMO

This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time.


Assuntos
Nêutrons , Prótons , Síncrotrons , Calibragem , Simulação por Computador , Desenho de Equipamento , Método de Monte Carlo , Aceleradores de Partículas , Doses de Radiação , Monitoramento de Radiação , Proteção Radiológica/métodos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA