Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 111(8): 1656-1672, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39043182

RESUMO

Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.


Assuntos
Síndrome de Alagille , Proteína Jagged-1 , Mutação de Sentido Incorreto , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Éxons/genética
2.
Stem Cell Res ; 77: 103429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703666

RESUMO

Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in JAG1 or less frequently, mutations in NOTCH2. The disease has been difficult to diagnose and treat due to variable expression. The generation of this iPSC line (TRNDi036-A) carrying a heterozygous mutation (p.Cys693*) in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.


Assuntos
Síndrome de Alagille , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Proteína Jagged-1 , Mutação , Síndrome de Alagille/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Masculino , Feminino
3.
Hepatology ; 77(2): 512-529, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036223

RESUMO

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.


Assuntos
Síndrome de Alagille , Colestase , Hipertensão Portal , Humanos , Criança , Masculino , Feminino , Síndrome de Alagille/epidemiologia , Estudos Retrospectivos , Hipertensão Portal/etiologia
4.
Semin Liver Dis ; 41(4): 525-537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34215014

RESUMO

Alagille syndrome (ALGS) is an autosomal dominant disorder caused by pathogenic variants in JAG1 or NOTCH2, which encode fundamental components of the Notch signaling pathway. Clinical features span multiple organ systems including hepatic, cardiac, vascular, renal, skeletal, craniofacial, and ocular, and occur with variable phenotypic penetrance. Genotype-phenotype correlation studies have not yet shown associations between mutation type and clinical manifestations or severity, and it has been hypothesized that modifier genes may modulate the effects of JAG1 and NOTCH2 pathogenic variants. Medical management is supportive, focusing on clinical manifestations of disease, with liver transplant indicated for severe pruritus, liver synthetic dysfunction, portal hypertension, bone fractures, and/or growth failure. New therapeutic approaches are under investigation, including ileal bile acid transporter (IBAT) inhibitors and other approaches that may involve targeted interventions to augment the Notch signaling pathway in involved tissues.


Assuntos
Síndrome de Alagille , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Síndrome de Alagille/terapia , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mutação , Receptor Notch2 , Transdução de Sinais
5.
Artigo em Inglês | MEDLINE | ID: mdl-33824926

RESUMO

The observation of bile duct paucity is an important diagnostic finding in children, occurring in roughly 11% of pediatric liver biopsies. Alagille syndrome (ALGS) is a well-defined syndromic form of intrahepatic bile duct paucity that is accompanied by a number of other key features, including cardiac, facial, ocular, and vertebral abnormalities. In the absence of these additional clinical characteristics, intrahepatic bile duct paucity results in a broad differential diagnosis that requires supplementary testing and characterization. Nearly 30 years after ALGS was first described, genetic studies identified a causative gene, JAGGED1, which spearheaded over two decades of research aimed to meticulously delineate the molecular underpinnings of ALGS. These advancements have characterized ALGS as a genetic disease and led to testing strategies that offer the ability to detect a pathogenic genetic variant in almost 97% of individuals with ALGS. Having a molecular understanding of ALGS has allowed for the development of numerous in vitro and in vivo disease models, which have provided hope and promise for the future generation of gene-based and protein-based therapies. Generation of these disease models has offered scientists a mechanism to study the dynamics of bile duct development and regeneration, and in doing so, produced tools that are applicable to the understanding of other congenital and acquired liver diseases.

6.
Genet Med ; 23(2): 323-330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33077891

RESUMO

PURPOSE: Detection of all major classes of genomic variants in a single test would decrease cost and increase the efficiency of genomic diagnostics. Genome sequencing (GS) has the potential to provide this level of comprehensive detection. We sought to demonstrate the utility of GS in the molecular diagnosis of 18 patients with clinically defined Alagille syndrome (ALGS), who had a negative or inconclusive result by standard-of-care testing. METHODS: We performed GS on 16 pathogenic variant-negative probands and two probands with inconclusive results (of 406 ALGS probands) and analyzed the data for sequence, copy-number, and structural variants in JAG1 and NOTCH2. RESULTS: GS identified four novel pathogenic alterations including a copy-neutral inversion, a partial deletion, and a promoter variant in JAG1, and a partial NOTCH2 deletion, for an additional diagnostic yield of 0.9%. Furthermore, GS resolved two complex rearrangements, resulting in identification of a pathogenic variant in 97.5% (n = 396/406) of patients after GS. CONCLUSION: GS provided an increased diagnostic yield for individuals with clinically defined ALGS who had prior negative or incomplete genetic testing by other methods. Our results show that GS can detect all major classes of variants and has potential to become a single first-tier diagnostic test for Mendelian disorders.


Assuntos
Síndrome de Alagille , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Sequência de Bases , Mapeamento Cromossômico , Testes Genéticos , Humanos , Proteína Jagged-1/genética
7.
Am J Med Genet A ; 185(3): 719-731, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369123

RESUMO

Alagille syndrome (ALGS) is a multisystem autosomal dominant developmental disorder caused predominantly by pathogenic variants in JAGGED1 (JAG1), and also by pathogenic variants in NOTCH2 in a much smaller number of individuals. Clinical presentation is highly variable and includes liver, heart, eye, skeleton, and facial abnormalities, with a subset of individuals also presenting with kidney, vascular, and central nervous system phenotypes. Hepatocellular carcinoma (HCC) is a rare complication of ALGS, though little is known about its incidence or etiology among affected individuals. Previous reports have identified HCC occurrence in both pediatric and adult cases of ALGS. We present a case report of HCC in a 58-year-old woman with a pathogenic JAG1 variant and no overt hepatic features of ALGS. Through a comprehensive literature review, we compile all reported pediatric and adult cases, and further highlight one previously reported case of HCC onset in an adult ALGS patient without any hepatic disease features, similar to our own described patient. Our case report and literature review suggest that ALGS-causing variants could confer risk for developing HCC regardless of phenotypic severity and highlight a need for a cancer screening protocol that would enable early detection and treatment in this at-risk population.


Assuntos
Síndrome de Alagille/complicações , Carcinoma Hepatocelular/etiologia , Proteína Jagged-1/genética , Neoplasias Hepáticas/etiologia , Mutação , Receptor Notch2/genética , Síndrome de Alagille/genética , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Prognóstico , Literatura de Revisão como Assunto
8.
Hum Mutat ; 41(5): 973-982, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944481

RESUMO

Gastrointestinal motility disorders include a spectrum of mild to severe clinical phenotypes that are caused by smooth muscle dysfunction. We investigated the genetic etiology of severe esophageal, gastric, and colonic dysmotility in two unrelated families with autosomal dominant disease presentation. Using exome sequencing, we identified a 2 base pair insertion at the end of the myosin heavy chain 11 (MYH11) gene in all affected members of Family 1 [NM_001040113:c.5819_5820insCA(p.Gln1941Asnfs*91)] and a 1 base pair deletion at the same genetic locus in Proband 2 [NM_001040113:c.5819del(p.Pro1940Hisfs*91)]. Both variants are predicted to result in a similarly elongated protein product. Heterozygous dominant negative MYH11 pathogenic variants have been associated with thoracic aortic aneurysm and dissection while biallelic null alleles have been associated with megacystis microcolon intestinal hypoperistalsis syndrome. This report highlights heterozygous protein-elongating MYH11 variants affecting the SM2 isoforms of MYH11 as a cause for severe gastrointestinal dysmotility, and we hypothesize that the mechanistic pathogenesis of this disease, dominant hypercontractile loss-of-function, is distinct from those implicated in other diseases involving MYH11 dysfunction.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Mutação , Cadeias Pesadas de Miosina/genética , Fenótipo , Adulto , Criança , Análise Mutacional de DNA , Eletromiografia , Endoscopia do Sistema Digestório , Transtornos da Motilidade Esofágica/diagnóstico , Transtornos da Motilidade Esofágica/genética , Feminino , Gastroparesia/diagnóstico , Gastroparesia/genética , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Enteropatias/diagnóstico , Enteropatias/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Radiografia , Síndrome , Adulto Jovem
9.
Hum Mutat ; 40(12): 2197-2220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343788

RESUMO

Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Receptor Notch2/genética , Síndrome de Alagille/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Proteína Jagged-1/metabolismo , Masculino , Taxa de Mutação , Linhagem , Receptor Notch2/metabolismo
10.
PLoS Genet ; 14(8): e1007532, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102696

RESUMO

Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 ×10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder.


Assuntos
Atresia Biliar/diagnóstico , Atresia Biliar/genética , Cromossomos Humanos Par 2/genética , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Animais , Criança , Etnicidade/genética , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Técnicas de Genotipagem , Humanos , Fígado/metabolismo , Modelos Logísticos , Masculino , Músculo Liso Vascular/citologia , Organogênese , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ratos
11.
Curr Pathobiol Rep ; 5(3): 233-241, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29270332

RESUMO

PURPOSE OF REVIEW: We review the genetics of the autosomal dominant, multi-system disorder, Alagille syndrome and provide a summary on how current functional models and emerging biotechnologies are equipped to guide scientists towards novel therapies. The importance of haploinsufficiency as a disease mechanism will be underscored throughout this discussion. RECENT FINDINGS: Alagille syndrome, a human disorder affecting the liver, heart, vasculature, kidney, and other systems, is caused by mutations in the Notch signaling pathway ligand, Jagged1 (JAG1) or the receptor, NOTCH2. Current advances in animal modeling, in vitro cell culture, and human induced pluripotent stem cells, provide new opportunities in which to study disease mechanisms and manifestations. SUMMARY: We anticipate that the availability of innovative functional models will allow scientists to test new gene therapies or small molecule treatments in physiologically-relevant systems. With these advances, we look forward to the development of new methods to help Alagille syndrome patients.

12.
Cell Mol Gastroenterol Hepatol ; 2(5): 663-675.e2, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28090565

RESUMO

BACKGROUND & AIMS: Alagille syndrome is an autosomal-dominant, multisystem disorder caused primarily by mutations in JAG1, resulting in bile duct paucity, cholestasis, cardiac disease, and other features. Liver disease severity in Alagille syndrome is highly variable, however, factors influencing the hepatic phenotype are unknown. We hypothesized that genetic modifiers may contribute to the variable expressivity of this disorder. METHODS: We performed a genome-wide association study in a cohort of Caucasian subjects with known pathogenic JAG1 mutations, comparing patients with mild vs severe liver disease, followed by functional characterization of a candidate locus. RESULTS: We identified a locus that reached suggestive genome-level significance upstream of the thrombospondin 2 (THBS2) gene. THBS2 codes for a secreted matricellular protein that regulates cell proliferation, apoptosis, and angiogenesis, and has been shown to affect Notch signaling. By using a reporter mouse line, we detected thrombospondin 2 expression in bile ducts and periportal regions of the mouse liver. Examination of Thbs2-null mouse livers showed increased microvessels in the portal regions of adult mice. We also showed that thrombospondin 2 interacts with NOTCH1 and NOTCH2 and can inhibit JAG1-NOTCH2 interactions. CONCLUSIONS: Based on the genome-wide association study results, thrombospondin 2 localization within bile ducts, and demonstration of interactions of thrombospondin 2 with JAG1 and NOTCH2, we propose that changes in thrombospondin 2 expression may further perturb JAG1-NOTCH2 signaling in patients harboring a JAG1 mutation and lead to a more severe liver phenotype. These results implicate THBS2 as a plausible candidate genetic modifier of liver disease severity in Alagille syndrome.

13.
Am J Med Genet A ; 170(3): 750-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26697755

RESUMO

We studied two brothers who presented in the newborn period with cardiac, renal, and hepatic anomalies that were initially suggestive of ALGS, although no mutations in JAG1 or NOTCH2 were identified. Exome sequencing demonstrated compound heterozygous mutations in the NEK8 gene (Never in mitosis A-related Kinase 8), a ciliary kinase indispensable for cardiac and renal development based on murine studies. The mutations included a c.2069_2070insC variant (p.Ter693LeufsTer86), and a c.1043C>T variant (p.Thr348Met) in the highly conserved RCC1 (Regulation of Chromosome Condensation 1) domain. The RCC1 domain is crucial for localization of the NEK8 protein to the centrosomes and cilia. Mutations in NEK8 have been previously reported in three fetuses (from a single family) with renal-hepatic-pancreatic dysplasia 2 (RHPD2), similar to Ivemark syndrome, and in three individuals with nephronophthisis (NPHP9). This is the third report of disease-causing mutations in the NEK8 gene in humans and only the second describing multi-organ involvement. The clinical features we describe differ from those in the previously published report in that (1) a pancreatic phenotype was not observed in the individuals reported here, (2) there were more prominent cardiac findings, (consistent with observations in murine models), and (3) we observed bile duct hypoplasia rather than ductal plate malformation. The patients reported here expand our understanding of the NEK8-associated phenotype. Our findings highlight the variable phenotypic expressivity and the spectrum of clinical manifestations due to mutations in the NEK8 gene.


Assuntos
Cardiopatias Congênitas/genética , Heterozigoto , Falência Renal Crônica/genética , Hepatopatias/congênito , Mutação , Proteínas Quinases/genética , Irmãos , Anormalidades Múltiplas , Exoma , Cardiopatias Congênitas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Rim/anormalidades , Falência Renal Crônica/diagnóstico , Fígado/anormalidades , Hepatopatias/diagnóstico , Masculino , Quinases Relacionadas a NIMA , Pâncreas/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA