Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Forests ; 10(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-37180360

RESUMO

In this paper, we provide an overview of positioning systems for moving resources in forest and fire management and review the related literature. Emphasis is placed on the accuracy and range of different localization and location-sharing methods, particularly in forested environments and in the absence of conventional cellular or internet connectivity. We then conduct a second review of literature and concepts related to several emerging, broad themes in data science, including the terms location-based services (LBS), geofences, wearable technology, activity recognition, mesh networking, the Internet of Things (IoT), and big data. Our objective in this second review is to inform how these broader concepts, with implications for networking and analytics, may help to advance natural resource management and science in the future. Based on methods, themes, and concepts that arose in our systematic reviews, we then augmented the paper with additional literature from wildlife and fisheries management, as well as concepts from video object detection, relative positioning, and inventory-tracking that are also used as forms of localization. Based on our reviews of positioning technologies and emerging data science themes, we present a hierarchical model for collecting and sharing data in forest and fire management, and more broadly in the field of natural resources. The model reflects tradeoffs in range and bandwidth when recording, processing, and communicating large quantities of data in time and space to support resource management, science, and public safety in remote areas. In the hierarchical approach, wearable devices and other sensors typically transmit data at short distances using Bluetooth, Bluetooth Low Energy (BLE), or ANT wireless, and smartphones and tablets serve as intermediate data collection and processing hubs for information that can be subsequently transmitted using radio networking systems or satellite communication. Data with greater spatial and temporal complexity is typically processed incrementally at lower tiers, then fused and summarized at higher levels of incident command or resource management. Lastly, we outline several priority areas for future research to advance big data analytics in natural resources.

3.
PeerJ ; 6: e4564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666750

RESUMO

Science communication is seen as critical for the disciplines of ecology and conservation, where research products are often used to shape policy and decision making. Scientists are increasing their online media communication, via social media and news. Such media engagement has been thought to influence or predict traditional metrics of scholarship, such as citation rates. Here, we measure the association between citation rates and the Altmetric Attention Score-an indicator of the amount and reach of the attention an article has received-along with other forms of bibliometric performance (year published, journal impact factor, and article type). We found that Attention Score was positively correlated with citation rates. However, in recent years, we detected increasing media exposure did not relate to the equivalent citations as in earlier years; signalling a diminishing return on investment. Citations correlated with journal impact factors up to ∼13, but then plateaued, demonstrating that maximizing citations does not require publishing in the highest-impact journals. We conclude that ecology and conservation researchers can increase exposure of their research through social media engagement and, simultaneously, enhance their performance under traditional measures of scholarly activity.

4.
PLoS One ; 12(10): e0184176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981540

RESUMO

Brown bears are known to use rubbing behavior as a means of chemical communication, but the function of this signaling is unclear. One hypothesis that has gained support is that male bears rub to communicate dominance to other males. We tested the communication of dominance hypothesis in a low-density brown bear population in southeast British Columbia. We contrasted rubbing rates for male and female bears during and after the breeding season using ten years of DNA-mark-recapture data for 643 individuals. Here we demonstrate that male brown bears rub 60% more during the breeding than the non-breeding season, while female rubbing had no seasonal trends. Per capita rub rates by males were, on average, 2.7 times higher than females. Our results suggest that the function of rubbing in the Rocky Mountains may not only be to communicate dominance, but also to self-advertise for mate attraction. We propose that the role of chemical communication in this species may be density-dependent, where the need to self-advertise for mating is inversely related to population density and communicating for dominance increases with population density. We suggest that future endeavors to elucidate the function of rubbing should sample the behavior across a range of population densities using camera trap and genotypic data.


Assuntos
Comunicação Animal , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Predomínio Social , Ursidae/fisiologia , Animais , Colúmbia Britânica , Feminino , Masculino , Densidade Demográfica , Estações do Ano
5.
PLoS One ; 9(9): e108797, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264612

RESUMO

New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly versus daily) for estimating survival.


Assuntos
Envelhecimento/fisiologia , Comportamento de Escolha , Cervos/crescimento & desenvolvimento , Modelos Biológicos , Animais , Animais Recém-Nascidos , Feminino , Geografia , Análise de Sobrevida , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...