Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Br J Cancer ; 125(4): 534-546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155340

RESUMO

BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.


Assuntos
Neovascularização Patológica/terapia , Fotoquimioterapia/métodos , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fracionamento da Dose de Radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Neoplasias da Próstata/irrigação sanguínea , Análise de Sobrevida , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Magn Reson Imaging ; 81: 1-9, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905831

RESUMO

Prospective cardiac gating during MRI is hampered by electromagnetic induction from the rapidly switched imaging gradients into the ECG detection circuit. This is particularly challenging in small animal MRI, as higher heart rates combined with a smaller myocardial mass render routine ECG detection challenging. We have developed an open-hardware system that enables continuously running MRI scans to be performed in conjunction with cardio-respiratory gating such that the relaxation-weighted steady state magnetisation is maintained throughout the scan. This requires that the R-wave must be detected reliably even in the presence of rapidly switching gradients, and that data previously acquired that were corrupted by respiratory motion re-acquired. The accurately maintained steady-state magnetisation leads to an improvement in image quality and removes alterations in intensity that may otherwise occur throughout the cardiac cycle and impact upon automated image analysis. We describe the hardware required to enable this and demonstrate its application and robust performance using prospectively cardio-respiratory gated CINE imaging that is operated at a single, constant TR. Schematics, technical drawings, component listing and assembly instructions are made publicly available.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Imagem Cinética por Ressonância Magnética , Animais , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos
3.
Br J Cancer ; 124(11): 1809-1819, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742147

RESUMO

BACKGROUND: The radiosensitising effect of the poly(ADP-ribose) polymerase inhibitor olaparib on tumours has been reported. However, its effect on normal tissues in combination with radiation has not been well studied. Herein, we investigated the therapeutic index of olaparib combined with hemithoracic radiation in a urethane-induced mouse lung cancer model. METHODS: To assess tolerability, A/J mice were treated with olaparib plus whole thorax radiation (13 Gy), body weight changes were monitored and normal tissue effects were assessed by histology. In anti-tumour (intervention) studies, A/J mice were injected with urethane to induce lung tumours, and were then treated with olaparib alone, left thorax radiation alone or the combination of olaparib plus left thorax radiation at 8 weeks (early intervention) or 18 weeks (late intervention) after urethane injection. Anti-tumour efficacy and normal tissue effects were assessed by visual inspection, magnetic resonance imaging and histology. RESULTS: Enhanced body weight loss and oesophageal toxicity were observed when olaparib was combined with whole thorax but not hemithorax radiation. In both the early and late intervention studies, olaparib increased the anti-tumour effects of hemithoracic irradiation without increasing lung toxicity. CONCLUSIONS: The addition of olaparib increased the therapeutic index of hemithoracic radiation in a mouse model of lung cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/patologia , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Radiossensibilizantes/uso terapêutico , Índice Terapêutico , Tórax/efeitos da radiação , Resultado do Tratamento
4.
Tomography ; 7(1): 39-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681462

RESUMO

Standardisation of animal handling procedures for a wide range of preclinical imaging scanners will improve imaging performance and reproducibility of scientific data. Whilst there has been significant effort in defining how well scanners should operate and how in vivo experimentation should be practised, there is little detail on how to achieve optimal scanner performance with best practices in animal welfare. Here, we describe a system-agnostic, adaptable and extensible animal support cradle system for cardio-respiratory-synchronised, and other, multi-modal imaging of small animals. The animal support cradle can be adapted on a per application basis and features integrated tubing for anaesthetic and tracer delivery, an electrically driven rectal temperature maintenance system and respiratory and cardiac monitoring. Through a combination of careful material and device selection, we have described an approach that allows animals to be transferred whilst under general anaesthesia between any of the tomographic scanners we currently or have previously operated. The set-up is minimally invasive, cheap and easy to implement and for multi-modal, multi-vendor imaging of small animals.


Assuntos
Anestésicos , Coração , Animais , Coração/diagnóstico por imagem , Imagem Multimodal , Reprodutibilidade dos Testes
5.
Adv Healthc Mater ; 9(21): e2001222, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965091

RESUMO

Magnetic resonance imaging (MRI) and computed tomography (CT) imaging with X-rays are crucial diagnostic techniques in medicine, especially in oncology for evaluating the response to treatment. Body movement causes image blurring and synchronized gating to the respiratory and cardiac cycles is required. Degradation of MRI and CT imaging by the presence of metal in electronic respiratory sensors has limited their use, with a preference for pressure balloons for detecting respiration, but these are cumbersome and insensitive. Here, graphene's role is studied as an electromagnetically transparent electrode in a piezoelectric graphene respiratory sensor (GRS) device designed specifically for dual gated MRI and CT imaging of small animals. The GRS is integrated into a 3D-printed cradle with all-carbon-based device life support (heating pad) and monitoring of small animals (electrocardiogram), enabling both heartbeat and respiration detection, significant improvements to throughput and reproducibility, and reduced animal suffering. This shows graphene's potential for a wide range of electromagnetic transparent electronics for medical imaging and diagnostics, beyond conventional metal electrodes.


Assuntos
Grafite , Animais , Coração , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Respiração
6.
Magn Reson Imaging ; 67: 101-108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935444

RESUMO

PURPOSE: High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain. METHODS: An optional B0 measurement block consisting of a 16 µs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation. RESULTS: Without B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain. CONCLUSIONS: High resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.


Assuntos
Encéfalo/diagnóstico por imagem , Compostos Férricos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Animais , Feminino , Processamento de Imagem Assistida por Computador , Inflamação , Campos Magnéticos , Camundongos , Camundongos Endogâmicos BALB C
7.
Lab Anim ; 54(4): 353-364, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31526094

RESUMO

Commercial mouse chow is designed to provide a complete, nutrient-rich diet, and it can contain upwards of 100 mg/kg manganese, an essential mineral. Manganese acts as a relaxation time-shortening contrast agent for both T1 and T2, and where standard chow is hydrated in the gastrointestinal tract, bright signals are produced when using T1-weighted imaging (T1WI). As a result of peristalsis, gastrointestinal hyperintensities result in temporally unstable signals, leading to image ghosting and decreased resolution from that prescribed. To avoid the problem, various methods of gastrointestinal tract modulation, including the use of intestinal cleansing with laxatives and dietary modulation, have been reported. Here, dietary modulation has been extended to the use of a biologically innocuous, long-term change of diet. In this study, we report on the use of a commercially available manganese-free chow to improve the image quality of the gastrointestinal tract. This manganese-free chow, apart from the omitted manganese which is available in tap water, is a complete diet and readily available. We investigated the time-dependent, diet-related gastrointestinal intensities on short-TR T1WI magnetic resonance imaging; monitored body mass, food and water consumption and standard blood biochemistry analysis following diet change; and determined manganese concentration in blood plasma following a five-day change to manganese-free chow. We show that the manganese-free chow presents a refinement to other gastrointestinal tract modulation, as it avoids the need for invasive procedures for gut voiding and can be provided ad libitum so that animals can be maintained with no need for prescribed diet change before imaging.


Assuntos
Abdome/diagnóstico por imagem , Ração Animal/análise , Meios de Contraste/análise , Trato Gastrointestinal/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Manganês/análise , Animais , Feminino , Camundongos
8.
Glia ; 68(2): 280-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31479168

RESUMO

Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand 18 F-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in 18 F-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.


Assuntos
Astrócitos/metabolismo , Inflamação/tratamento farmacológico , Microglia/metabolismo , Neuroglia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos
9.
Tomography ; 5(2): 274-281, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31245549

RESUMO

A magnetic resonance (MR)-, computed tomography (CT)-, single-photon emission computed tomography (SPECT)-, and positron emission tomography (PET)-compatible carbon-fiber sheet resistor for temperature maintenance in small animals where space limitations prevent the use of circulating fluids was developed. A 250 Ω carbon-fiber sheet resistor was mounted to the underside of an imaging cradle. Alternating current, operating at 99 kHz, and with a power of 1-2 W, was applied to the resistor providing a cradle base temperature of ∼37°C. Temperature control was implemented with a proportional-integral-derivative controller, and temperature maintenance was demonstrated in 4 mice positioned in both MR and PET/SPECT/CT scanners. MR and CT compatibility were also shown, and multimodal MR-CT-PET-SPECT imaging of the mouse abdomen was performed in vivo. Core temperature was maintained at 35.5°C ± 0.2°C. No line-shape, frequency, or image distortions attributable to the current flow through the heater were observed on MR. Upon CT imaging, no heater-related artifacts were observed when carbon-fiber was used. Multimodal imaging was performed and images could be easily coregistered, displayed, analyzed, and presented. Carbon fiber sheet resistors powered with high-frequency alternating current allow homeothermic maintenance that is compatible with multimodal imaging. The heater is small, and it is easy to produce and integrate into multimodal imaging cradles.


Assuntos
Temperatura Corporal/fisiologia , Fibra de Carbono , Calefação/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos CBA , Modelos Animais , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
10.
Magn Reson Imaging ; 60: 1-6, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928386

RESUMO

PURPOSE: Multi-slice scanning in the abdomen and thorax of small animals is compromised by the effects of respiration unless imaging and respiration are synchronised. To avoid the signal modulations that result from respiration motion and a variable TR, blocks of fully relaxed slices are typically acquired during inter-breath periods, at the cost of scan efficiency. This paper reports a conceptually simple yet effective prospective gating acquisition mode for multi-slice scanning in free breathing small animals at any fixed TR of choice with reduced sensitivity to respiratory motion. METHODS: Multi-slice scan modes have been implemented in which each slice has its own specific projection or phase encode loop index counter. When a breath is registered RF pulses continue to be applied but data are not acquired, and the corresponding counters remain fixed so that the data are acquired one TR later, providing it coincides with an inter-breath period. The approach is refined to reacquire the slice data that are acquired immediately before each breath is detected. Only the data with reduced motion artefact are used in image reconstruction. The efficacy of the method is demonstrated in the RARE scan mode which is well known to be particularly useful for tumour visualization. RESULTS: Validation in mice with RARE demonstrates improved stability with respect to ungated scanning where signal averaging is often used to reduce artefacts. SNR enhancement maps demonstrate the improved efficiency of the proposed method that is equivalent to at least a 2.5 fold reduction in scan time with respect to ungated signal averaging. A steady-state magnetisation transfer contrast prepared gradient echo implementation is observed to highlight tumour structure. Supplementary simulations demonstrate that only small variations in respiration rate are required to enable efficient sampling with the proposed method. CONCLUSIONS: The proposed prospective gating acquisition scheme enables efficient multi-slice scanning in small animals at the optimum TR with reduced sensitivity to respiratory motion. The method is compatible with a wide range of complementary methods including non-Cartesian scan modes, partially parallel imaging, and compressed sensing. In particular, the proposed scheme reduces the need for continual close monitoring to effect operator intervention in response to respiratory rate changes, which is both difficult to maintain and precludes high throughput.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Movimento (Física) , Algoritmos , Animais , Artefatos , Feminino , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Oxigênio , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração , Razão Sinal-Ruído , Software
11.
PLoS One ; 14(2): e0212172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753240

RESUMO

The identification and measurement of tumours is a key requirement in the study of tumour development in mouse models of human cancer. Disease burden in autochthonous tumours, such as those arising in the lung, can be seen with non-invasive imaging, but cannot be accurately measured using standard tools such as callipers. Lung imaging is further complicated in the mouse due to instabilities arising from the rapid but cyclic cardio-respiratory motions, and the desire to use free-breathing animals. Female A/JOlaHsd mice were either injected (i.p.) with PBS 0.1ml/10g body weight (n = 6), or 10% urethane/PBS 0.1ml/10g body weight (n = 12) to induce autochthonous lung tumours. Cardio-respiratory synchronised bSSFP MRI, at 200 µm isotropic resolution was performed at 8, 13 and 18 weeks post induction. Images from the same mouse at different time points were aligned using threshold-based segmented masks of the lungs (ITK-SNAP and MATLAB) and tumour volumes were determined via threshold-based segmentation (ITK-SNAP).Scan times were routinely below 10 minutes and tumours were readily identifiable. Image registration allowed serial measurement of tumour volumes as small as 0.056 mm3. Repetitive imaging did not lead to mouse welfare issues. We have developed a motion desensitised scan that enables high sensitivity MRI to be performed with high throughput capability of greater than 4 mice/hour. Image segmentation and registration allows serial measurement of individual, small tumours. This allows fast and highly efficient volumetric lung tumour monitoring in cohorts of 30 mice per imaging time point. As a result, adaptive trial study designs can be achieved, optimizing experimental and welfare outcomes.


Assuntos
Neoplasias Pulmonares , Pulmão , Imageamento por Ressonância Magnética , Movimento (Física) , Neoplasias Experimentais , Carga Tumoral , Animais , Feminino , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia
12.
Clin Cancer Res ; 24(19): 4694-4704, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959141

RESUMO

Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem , Idoso , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Anti-Idiotípicos/administração & dosagem , Anticorpos Anti-Idiotípicos/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
13.
Magn Reson Imaging ; 53: 20-27, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29964184

RESUMO

PURPOSE: Cardiac and respiratory motion derived image artefacts are reduced when data are acquired with cardiac and respiratory synchronisation. Where steady state imaging techniques are required in small animals, synchronisation is most commonly performed using retrospective gating techniques but these invoke an inherent time penalty. This paper reports the development of prospective gating techniques for cardiac and respiratory motion desensitised MRI with significantly reduced minimum scan time compared to retrospective gating. METHODS: Prospective gating incorporating the automatic reacquisition of data corrupted by motion at the entry to each breath was implemented in short TR 3D spoiled gradient echo imaging. Motion sensitivity was examined over the whole mouse body for scans performed without gating, with respiratory gating, and with cardio-respiratory gating. The gating methods were performed with and without automatic reacquisition of motion corrupted data immediately after completion of the same breath. Prospective cardio-respiratory gating, with acquisition of 64 k-space lines per cardiac R-wave, was used to enable whole body DCE-MRI in the mouse. RESULTS: Prospective cardio-respiratory gating enabled high fidelity steady state imaging of physiologically mobile organs such as the heart and lung. The automatic reacquisition of data corrupted by motion at the entry to each breath minimised respiratory motion artefact and enabled a highly efficient data capture that was adaptive to changes in the inter-breath interval. Prospective cardio-respiratory gating control enabled DCE-MRI to be performed over the whole mouse body with the acquisition of successive image volumes every 12-15 s at 422 µm isotropic resolution. CONCLUSIONS: Highly efficient cardio-respiratory motion desensitised steady state MRI can be performed in small animals with prospective synchronisation, centre-out phase-encode ordering, and the automatic reacquisition of data corrupted by motion at the entry to each breath. The method presented is robust against spontaneous changes in the breathing rate. Steady state imaging with prospective cardio-respiratory gating is much more efficient than with retrospective gating, and enables the examination of rapidly changing systems such as those found when using DCE-MRI.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Artefatos , Pulmão , Camundongos , Camundongos Endogâmicos CBA , Movimento (Física)
14.
IEEE Trans Med Imaging ; 37(3): 724-732, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29533893

RESUMO

Predicting tumor growth and its response to therapy remains a major challenge in cancer research and strongly relies on tumor growth models. In this paper, we introduce, calibrate, and verify a novel image-driven reaction-diffusion model of avascular tumor growth. The model allows for proliferation, death and spread of tumor cells, and accounts for nutrient distribution and hypoxia. It is constrained by longitudinal time series of dynamic contrast-enhancement-MRI images. Tumor specific parameters are estimated from two early time points and used to predict the spatio-temporal evolution of the tumor volume and cell densities at later time points. We first test our parameter estimation approach on synthetic data from 15 generated tumors. Our in silico study resulted in small volume errors (<5%) and high Dice overlaps (>97%), showing that model parameters can be successfully recovered and used to accurately predict the tumor growth. Encouraged by these results, we apply our model to seven pre-clinical cases of breast carcinoma. We are able to show promising preliminary results, especially for the estimation for early time points. Processes like angiogenesis and apoptosis should be included to further improve predictions for later time points.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Animais , Simulação por Computador , Humanos , Camundongos
15.
Lab Anim ; 52(5): 531-535, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29451416

RESUMO

In vivo optical imaging enables detection and quantification of light-emitting compounds from the whole body in small animals such as the mouse, but it typically requires the use of anaesthetics for subject immobilisation due to long exposure times. Excessively deep anaesthesia can result in unacceptably compromised physiology, whilst excessively light anaesthesia can result in animals waking up. Here we report a respiratory monitoring setup for an in vivo bioluminescence and fluorescence imaging device which simultaneously allows real-time adaptive control of anaesthesia depth in multiple animals to (i) potentially increase the consistency between animals, (ii) ensure animals are maintained within minimally intrusive, adequate anaesthetic plane and (iii) provide a valuable refinement strategy for a common challenge within animal-based research.


Assuntos
Monitorização Fisiológica/métodos , Imagem Óptica/métodos , Taxa Respiratória , Animais , Feminino , Camundongos , Monitorização Fisiológica/instrumentação , Imagem Óptica/instrumentação
16.
PLoS One ; 12(4): e0176693, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453537

RESUMO

INTRODUCTION: Preclinical CT-guided radiotherapy platforms are increasingly used but the CT images are characterized by poor soft tissue contrast. The aim of this study was to develop a robust and accurate method of MRI-guided radiotherapy (MR-IGRT) delivery to abdominal targets in the mouse. METHODS: A multimodality cradle was developed for providing subject immobilisation and its performance was evaluated. Whilst CT was still used for dose calculations, target identification was based on MRI. Each step of the radiotherapy planning procedure was validated initially in vitro using BANG gel dosimeters. Subsequently, MR-IGRT of normal adrenal glands with a size-matched collimated beam was performed. Additionally, the SK-N-SH neuroblastoma xenograft model and the transgenic KPC model of pancreatic ductal adenocarcinoma were used to demonstrate the applicability of our methods for the accurate delivery of radiation to CT-invisible abdominal tumours. RESULTS: The BANG gel phantoms demonstrated a targeting efficiency error of 0.56 ± 0.18 mm. The in vivo stability tests of body motion during MR-IGRT and the associated cradle transfer showed that the residual body movements are within this MR-IGRT targeting error. Accurate MR-IGRT of the normal adrenal glands with a size-matched collimated beam was confirmed by γH2AX staining. Regression in tumour volume was observed almost immediately post MR-IGRT in the neuroblastoma model, further demonstrating accuracy of x-ray delivery. Finally, MR-IGRT in the KPC model facilitated precise contouring and comparison of different treatment plans and radiotherapy dose distributions not only to the intra-abdominal tumour but also to the organs at risk. CONCLUSION: This is, to our knowledge, the first study to demonstrate preclinical MR-IGRT in intra-abdominal organs. The proposed MR-IGRT method presents a state-of-the-art solution to enabling robust, accurate and efficient targeting of extracranial organs in the mouse and can operate with a sufficiently high throughput to allow fractionated treatments to be given.


Assuntos
Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Abdome/diagnóstico por imagem , Abdome/efeitos da radiação , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/efeitos da radiação , Animais , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética/instrumentação , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos Transgênicos , Movimento (Física) , Imagem Multimodal/instrumentação , Transplante de Neoplasias , Imagens de Fantasmas , Radiometria/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral
17.
Br J Radiol ; 90(1069): 20160427, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27524406

RESUMO

OBJECTIVE: Neuroblastoma has one of the lowest survival rates of all childhood cancers, despite the use of intensive treatment regimens. Preclinical models of neuroblastoma are essential for testing new multimodality protocols, including those that involve radiotherapy (RT). The aim of this study was to develop a robust method for RT planning and tumour response monitoring based on combined MRI and cone-beam CT (CBCT) imaging and to apply it to a widely studied mouse xenograft model of neuroblastoma, SK-N-SH. METHODS: As part of a tumour growth inhibition study, SK-N-SH xenografts were generated in BALB/c nu/nu mice. Mice (n = 8) were placed in a printed MR- and CT-compatible plastic cradle, imaged using a 4.7-T MRI scanner and then transferred to a small animal radiation research platform (SARRP) irradiator with on-board CBCT. MRI/CBCT co-registration was performed to enable RT planning using the soft-tissue contrast afforded by MRI prior to delivery of RT (5 Gy). Tumour response was assessed by serial MRI and calliper measurements. RESULTS: SK-N-SH xenografts formed soft, deformable tumours that could not be differentiated from surrounding normal tissues using CBCT. MR images, which allowed clear delineation of tumours, were successfully co-registered with CBCT images, allowing conformal RT to be delivered. MRI measurements of tumour volume 4 days after RT correlated strongly with length of survival time. CONCLUSION: MRI allowed precision RT of SK-N-SH tumours and provided an accurate means of measuring tumour response. Advances in knowledge: MRI-based RT planning of murine tumours is feasible using an SARRP irradiator.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Neuroblastoma/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Análise de Variância , Animais , Modelos Animais de Doenças , Diagnóstico Precoce , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/diagnóstico , Valor Preditivo dos Testes , Dosagem Radioterapêutica , Medição de Risco , Carga Tumoral
18.
PLoS One ; 11(11): e0164920, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27806062

RESUMO

PURPOSE: To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. MATERIALS AND METHODS: An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10-100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. RESULTS: Images and spectra acquired in the presence and absence of 50-100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse's temperature approached the set target. CONCLUSION: The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality.


Assuntos
Temperatura Corporal , Eletricidade , Calefação , Imageamento por Ressonância Magnética , Anestesia , Animais , Calefação/métodos , Camundongos , Ratos
19.
PLoS One ; 10(6): e0128537, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046526

RESUMO

INTRODUCTION: Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. PROCEDURES: A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. RESULTS: Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 µm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. CONCLUSIONS: The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging and quantitative analysis of the tumour vasculature at higher resolution than was possible before. Moreover, it can be applied in a multimodal setting, therefore combining anatomical and dynamic information.


Assuntos
Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Animais , Artefatos , Modelos Animais de Doenças , Feminino , Fluoroscopia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos CBA , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Tomografia Computadorizada por Raios X/instrumentação , Transplante Heterólogo
20.
Magn Reson Imaging ; 33(6): 847-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25863135

RESUMO

PURPOSE: To develop an MR-compatible resistive heater for temperature maintenance of anaesthetized animals. MATERIALS AND METHODS: An MR-compatible resistive electrical heater was formed from a tightly-wound twisted pair wire, interfaced to a homeothermic maintenance controller. Fat-suppressed images and localized spectra were acquired with the twisted pair heater and a near-identical single strand heater during operation at maximum power. Data were also acquired in the absence of heating to demonstrate the insensitivity of MR to distortions arising from the passage of current through the heater elements. The efficacy of temperature maintenance was examined by measuring rectal temperature immediately following induction of general anesthesia and throughout and after the acquisition of a heater artifact-prone image series. RESULTS: Images and spectra acquired in the presence and absence of DC current through the twisted pair heater were identical whereas the passage of current through the single strand wire created field shifts and lineshape distortions. Temperature that is lost during anesthesia induction was recovered within approximately 10-20 minutes of induction, and a stable temperature is reached as the animal's temperature approaches the set target. CONCLUSION: The twisted pair wire heater does not interfere with MR image quality and maintains adequate thermal input to the animal to maintain body temperature.


Assuntos
Regulação da Temperatura Corporal , Calefação/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Animais , Temperatura Corporal , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...