Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Robot ; 10(1): 159-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35708594

RESUMO

Robotic hands have long strived to reach the performance of human hands. The physical complexity and extraordinary capabilities of the human hand, in terms of sensing, actuation, and cognitive abilities, make achieving this goal challenging. At the heart of the physical structure of the hand is its' passive behaviors. Seen most clearly in soft robotic hands, these behaviors influence and affect the mechanical, sensing, and control functionalities. With this perspective, we present a framework through which passivity in robot hands can be understood, by concretely identifying the role of passivity in the design, fabrication, and control of soft hands. In this framework we focus on the interactions between the physical hand and the: environment, internal actuation, sensor morphology, and wrist control. Taking these surrounding systems away, we are left with a passive soft hand whose behaviors emerge from external interactions. Inspired by the human hand, we define the role of these four key interacting pillars and review how state-of-the art robot hands utilize these four elements to aid functionality. We show how these pillars promote hybrid soft-rigid hands with rich behaviors, providing benefits in terms of the increased adaptability to uncertain environments, improved scalability and reduction in the cost of actuation, sensing, and control. This review provides a conceptual framework for approaching hand design and analysis through consideration of the passive behaviors. This highlights not only the advances that can be made by approaching the problem in this way but also the outstanding challenges that stem from this outlook.


Assuntos
Robótica , Humanos , Mãos , Extremidade Superior , Punho , Exame Físico
2.
Bioinspir Biomim ; 16(2)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540393

RESUMO

The structure of the human musculo-skeletal systems shows complex passive dynamic properties, critical for adaptive grasping and motions. Through wrist and arm actuation, these passive dynamic properties can be exploited to achieve nuanced and diverse environment interactions. We have developed a passive anthropomorphic robot hand that shows complex passive dynamics. We require arm/wrist control with the ability to exploit these. Due to the soft hand structures and high degrees of freedom during passive-object interactions, bespoke generation of wrist trajectories is challenging. We propose a new approach, which takes existing wrist trajectories and adapts them to changes in the environment, through analysis and classification of the interactions. By analysing the interactions between the passive hand and object, the required wrist motions to achieve them can be mapped back to control of the hand. This allows the creation of trajectories which are parameterized by object size or task. This approach shows up to 86% improvement in grasping success rate with a passive hand for object size changes up to ±50%.


Assuntos
Mãos , Punho , Força da Mão , Humanos , Movimento (Física) , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA