Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 153(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566084

RESUMO

In myocardium, phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) is thought to modulate the cooperative activation of the thin filament by binding to myosin and/or actin, thereby regulating the probability of cross-bridge binding to actin. At low levels of Ca2+ activation, unloaded shortening velocity (Vo) in permeabilized cardiac muscle is comprised of an initial high-velocity phase and a subsequent low-velocity phase. The velocities in these phases scale with the level of activation, culminating in a single high-velocity phase (Vmax) at saturating Ca2+. To test the idea that cMyBP-C phosphorylation contributes to the activation dependence of Vo, we measured Vo before and following treatment with protein kinase A (PKA) in skinned trabecula isolated from mice expressing either wild-type cMyBP-C (tWT), nonphosphorylatable cMyBP-C (t3SA), or phosphomimetic cMyBP-C (t3SD). During maximal Ca2+ activation, Vmax was monophasic and not significantly different between the three groups. Although biphasic shortening was observed in all three groups at half-maximal activation under control conditions, the high- and low-velocity phases were faster in the t3SD myocardium compared with values obtained in either tWT or t3SA myocardium. Treatment with PKA significantly accelerated both the high- and low-velocity phases in tWT myocardium but had no effect on Vo in either the t3SD or t3SA myocardium. These results can be explained in terms of a model in which the level of cMyBP-C phosphorylation modulates the extent and rate of cooperative spread of myosin binding to actin.


Assuntos
Proteínas de Transporte , Contração Miocárdica , Animais , Proteínas de Transporte/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Fosforilação
2.
J Gen Physiol ; 151(1): 77-89, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30573635

RESUMO

The loss of cardiac myosin binding protein C (cMyBP-C) results in left ventricular dilation, cardiac hypertrophy, and impaired ventricular function in both constitutive and conditional cMyBP-C knockout (MYBPC3 null) mice. It remains unclear whether the structural and functional phenotypes expressed in the MYBPC3 null mouse are reversible, which is an important question, since reduced expression of cMyBP-C is an important cause of hypertrophic cardiomyopathy in humans. To investigate this question, we generated a cardiac-specific transgenic mouse model using a Tet-Off inducible system to permit the controlled expression of WT cMyBP-C on the MYBPC3 null background. Functional Tet-Off mice expressing WT cMyBP-C (FT-WT) were generated by crossing tetracycline transactivator mice with responder mice carrying the WT cMyBP-C transgene. Prior to dietary doxycycline administration, cMyBP-C was expressed at normal levels in FT-WT myocardium, which exhibited similar levels of steady-state force and in vivo left ventricular function as WT mice. Introduction of dietary doxycycline for four weeks resulted in a partial knockdown of cMyBP-C expression and commensurate impairment of systolic and diastolic function to levels approaching those observed in MYBPC 3 null mice. Subsequent withdrawal of doxycycline from the diet resulted in the reexpression of cMyBP-C to levels comparable to those observed in WT mice, along with near-complete recovery of in vivo ventricular function. These results show that the cardiac phenotypes associated with MYBPC3 null mice are reversible. Our work also validates the use of the Tet-Off inducible system as a means to study the mechanisms underlying hypertrophic cardiomyopathy.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/metabolismo , Função Ventricular Esquerda/fisiologia , Animais , Miosinas Cardíacas/fisiologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Diástole/efeitos dos fármacos , Diástole/fisiologia , Doxiciclina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Fenótipo , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Sístole/efeitos dos fármacos , Sístole/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 356(1): 137-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26483397

RESUMO

Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aneurisma da Aorta Abdominal/tratamento farmacológico , Citocinas/antagonistas & inibidores , Diterpenos/uso terapêutico , Integrinas/antagonistas & inibidores , Animais , Aorta Torácica/efeitos dos fármacos , Citocinas/biossíntese , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Integrinas/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Cultura Primária de Células , Linfócitos T/efeitos dos fármacos
4.
J Vasc Surg ; 62(6): 1607-14.e2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24974783

RESUMO

OBJECTIVE: Murine models have proved instrumental in studying various aspects of abdominal aortic aneurysm (AAA), from identification of underlying pathophysiologic changes to the development of novel therapeutic strategies. In the current study, we describe a new model in which an elastase-treated donor aorta is transplanted to a recipient mouse and allowed to progress to aneurysm. We hypothesized that by transplanting an elastase-treated abdominal aorta of one genotype to a recipient mouse of a different genotype, one can differentiate pathophysiologic factors that are intrinsic to the aortic wall from those stemming from circulation and other organs. METHODS: Elastase-treated aorta was transplanted to the infrarenal abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Heat-inactivated elastase-treated aorta was used as a control. Syngeneic transplants were performed with use of 12-week-old C57BL/6 littermates. Transplant grafts were harvested from recipient mice on day 7 or day 14 after surgery. The aneurysm outcome was measured by aortic expansion, elastin degradation, proinflammatory cytokine expression, and inflammatory cell infiltration and compared with that produced with the established, conventional elastase infusion model. RESULTS: The surgical technique success rate was 75.6%, and the 14-day survival rate was 51.1%. By day 14 after surgery, all of the elastase-treated transplanted abdominal aortas had dilated and progressed to AAAs, defined as 100% or more increase in the maximal external diameter compared with that measured before elastase perfusion, whereas none of the transplanted aortas pretreated with inactive elastase became aneurysmal (percentage increase in maximum aortic diameter: 159.36% ± 23.27%, transplanted elastase, vs 41.46% ± 9.34%, transplanted inactive elastase). Aneurysm parameters, including elastin degradation and infiltration of macrophages and T lymphocytes, were found to be identical to those observed in the conventional elastase model. Quantitative polymerase chain reaction analysis revealed similarly increased levels of proinflammatory cytokines (relative changes of mRNA in the conventional elastase model vs transplant model: tumor necrosis factor α, 1.71 ± 0.27 vs 2.93 ± 0.86; monocyte chemoattractant protein 1, 2.36 ± 0.58 vs 2.87 ± 0.51; chemokine (C-C motif) ligand 5, 3.37 ± 0.92 vs 3.46 ± 0.83; and interferon γ, 3.09 ± 0.83 vs 5.30 ± 1.69). Using green fluorescent protein transgenic mice as donors or recipients, we demonstrated that a small quantity of mononuclear leukocytes in the transplant grafts bared the genotype of the donors. CONCLUSIONS: Transplanted elastase-treated abdominal aorta could develop to aneurysm in recipient mice. This AAA transplant model can be used to examine how the microenvironment of a transplanted aneurysmal aorta may be altered by the contributions of the "global" environment of the recipient.


Assuntos
Aorta Abdominal/transplante , Aneurisma da Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/cirurgia , Modelos Animais de Doenças , Aloenxertos , Animais , Aorta Abdominal/fisiopatologia , Microambiente Celular , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Elastase Pancreática/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...