Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170218, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280578

RESUMO

Spatiotemporal distribution patterns of microplastic (MP) particles in lakes hinge on both the physical conditions in the lake and particle properties. Using numerical simulations, we systematically investigated the influence of lake depth and bathymetry, wind and temperature conditions, MP particle release location and timing, as well as particle diameter (10, 20, and 50 µm). Our results indicate that maximum lake depth had the greatest effect on the residence time in the water column, as it determines the settling timescale and occurrence of hydrodynamic complexity such as density-driven flows in the lake. Increasing particle size from 10 to 20 and 50 µm also significantly reduced the residence time making particle size the factor with the second strongest effect on the residence time and, in turn, on the availability of MP particles for uptake by organisms. Changing bathymetry from a uniform to a non-uniform had a less pronounced effect on particle residence time compared to maximum depth and particle size. Release location, wind conditions, and release time had comparably little effect on particle behavior but became more important as MP particle size decreased. The release of the 10 µm MP particles in the deeper lakes with uniform bathymetry during summer with stable thermal stratification, resulted in a nearly month-long turnover phase in the fall in which both settling and rising of particles occurred simultaneously. This was caused by convective heat and water transport during this period. In these scenarios about 2.6 to 5.4 % of the released MP particles were held in or returned to the water layers near the lake surface. While acknowledging the dominant role of lake depth and MP particle size on the particle residence time, this study further emphasizes that it is ultimately a particular combination of different factors and their interactions that shape MP distribution patterns in lakes.

2.
Water Res ; 229: 119463, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543087

RESUMO

The microplastic residence time in lakes is a key factor controlling its uptake by lake organisms. In this work we have, for the first time, conducted a series of microplastic addition experiments in a 12 × 3 m lake mesocosm and traced its transport through the lake water column. This was combined with a 1D physically based random walk model of microplastic transport. Four experiments were conducted using three microplastic size ranges (1-5, 28-48, and 53-63 µm) over one year during thermal stratification and lake turnover. The results showed that the residence time in the water column largely depended on particle size and lake hydrodynamics, although the smallest particles were poorly represented by the model. Residence times in the mesocosm ranged between ∼1 day for the largest particles to 24 days for the small particles during summer. The modeled residence time were similar to the measured values of the 28-48 µm and 53-63 µm particles, but for the smallest particles residence times were calculated to be >200 d. The discrepancy is likely due to aggregation between the small microplastic particles and natural lake particles, which increases the microplastic settling velocity. Aggregation is favored for the small particles due their large surface area to volume ratio. In contrast, density instabilities in the water column during autumn likely led to turbulent convective mixing and rapid microplastic transport within the water column. This work shows that microplastic transport within lakes is complex and not fully understood, especially for the smallest sizes, and involves interactions between physical, physicochemical and biological processes.


Assuntos
Lagos , Poluentes Químicos da Água , Lagos/química , Microplásticos , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água , Sedimentos Geológicos
3.
Sci Rep ; 12(1): 10204, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715436

RESUMO

Dissolved oxygen (DO) is crucial for aerobic life in streams and rivers and mostly depends on photosynthesis (P), ecosystem respiration (R) and atmospheric gas exchange (G). However, climate and land use changes progressively disrupt metabolic balances in natural streams as sensitive reflectors of their catchments. Comprehensive methods for mapping fundamental ecosystem services become increasingly important in a rapidly changing environment. In this work we tested DO and its stable isotope (18O/16O) ratios as novel tools for the status of stream ecosystems. For this purpose, six diel sampling campaigns were performed at three low-order and mid-latitude European streams with different land use patterns. Modelling of diel DO and its stable isotopes combined with land use analyses showed lowest P rates at forested sites, with a minimum of 17.9 mg m-2 h-1. Due to high R rates between 230 and 341 mg m-2 h-1 five out of six study sites showed a general heterotrophic state with P:R:G ratios between 0.1:1.1:1 and 1:1.9:1. Only one site with agricultural and urban influences showed a high P rate of 417 mg m-2 h-1 with a P:R:G ratio of 1.9:1.5:1. Between all sites gross G rates varied between 148 and 298 mg m-2 h-1. In general, metabolic rates depend on the distance of sampling locations to river sources, light availability, nutrient concentrations and possible exchanges with groundwater. The presented modelling approach introduces a new and powerful tool to study effects of land use on stream health. Such approaches should be integrated into future ecological monitoring.


Assuntos
Ecossistema , Rios , Agricultura , Oxigênio/análise , Isótopos de Oxigênio/análise
4.
Chemosphere ; 293: 133515, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34990716

RESUMO

Endocrine-disrupting compounds (EDCs), as well as microplastics, have drawn global attention due to their presence in the aquatic ecosystem and persistence in wastewater treatment plants (WWTPs). In the present study, for simultaneous bio-removal of two EDCs, 17α-ethinylestradiol (EE2), bisphenol A (BPA), and a microplastic, polypropylene (PP) four kinds of periphytic biofilms were employed. Additionally, the effect of humic acid (HA) on the removal efficacy of these biofilms was evaluated. It was observed that EE2 and BPA (0.2 mg L-1 each) were completely (∼100%) removed within 36 days of treatment; and the biodegradation of EE2, BPA, and PP was significantly enhanced in the presence of HA. Biodegradation of EE2 and BPA was evaluated through Ultra-high performance liquid chromatography (UHPLC), and Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was used to determine the mechanism of degradation. Gel permeation chromatography (GPC) and SEM had validated the biodegradation of PP (5.2-14.7%). MiSeqsequencing showed that the community structure of natural biofilm changed after the addition of HA, as well as after the addition of EDCs and PP. This change in community structure might be a key factor regarding variable biodegradation percentages. The present study revealed the potential of periphytic biofilms for the simultaneous removal of pollutants of different chemical natures, thus provides a promising new method for wastewater treatment applications.


Assuntos
Disruptores Endócrinos , Microbiota , Perifíton , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Etinilestradiol/análise , Cromatografia Gasosa-Espectrometria de Massas , Substâncias Húmicas/análise , Microplásticos , Plásticos , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 796: 148982, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273837

RESUMO

Clay minerals are important constituents of porous media. To date, only little is known about the transport and retention behavior of nanoplastics in clay-containing soil. To investigate the effects of clay minerals on the mobility of nanoplastics in saturated porous media, polystyrene nanoplastics (PS-NPs) were pumped through columns packed with sand and clay minerals (kaolinite and illite) at different pH and ionic strengths (IS). Mobility of PS-NPs decreased with increasing clay content attributed to physical straining effects (smaller pore throats and more complex flow pathways). Variations in pH and IS altered the surface charges of both PS-NPs and porous media and thus affecting the interaction energy. An increase of IS from 10 mM to 50 mM NaCl decreased the maximum energy barrier and secondary minimum from 142 KBT to 84 KBT and from -0.1 KBT to -0.72 KBT, respectively. Thus, the maximum C/C0 ratio decreased from ~51% to ~0% (pH 5.9, 3% kaolinite). Among the two clay minerals, kaolinite showed a stronger inhibitory effect on PS-NPs transport compared to illite. For instance, at the same condition (3% clay content, pH 5.9, 10 mM NaCl), the (C/C0)max of PS-NPs in kaolinite was ~51%, while for illite, it was ~77%. The difference in transport inhibition was mainly attributed to amphoteric sites on the edges of kaolinite which served as favorable deposition sites at pH 5.9 (pHpzc-edge is ~2.5 for illite and ~6.5 for kaolinite). Besides, the morphology of kaolinite was more complex than illite, which may retain more PS-NPs in kaolinite. Results and conclusions from the study will provide some valuable insights to better understand the fate of NPs in the soil-aquifer system.


Assuntos
Microplásticos , Água , Argila , Minerais , Porosidade
6.
Water Res ; 201: 117376, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34218090

RESUMO

Bank filtration is a cost-effective and sustainable method of improving surface water quality for drinking water production. During aquifer transit, natural biodegradation and physiochemical filtration improve the quality of the raw water by removing sediments, pollutants, and pathogens. Strict regulations prohibit the use of substances that can be used to estimate aquifer residence times to define water protection areas for bank filtration. In this study, we present a novel measurement and modeling framework for deriving mean aquifer residence times for bank filtrate using the natural tracer radon-222. The method is intended for application in the drinking water sector, where extraction wells are screened over the entire aquifer and pumps are operated at high production rates. Mean aquifer residence times are estimated using composite residence time distributions that account for flow path mixing and non-uniform residence times with multiple components including bank filtrate, shallow groundwater, and deep groundwater. The mathematical framework is demonstrated for a drinking water production facility. Radon activities for the six monitored extraction wells ranged between 4,400 and 8,400 Bq/m³. Estimated mean aquifer residence times for the wells range from < 5 days to 110 days and strongly depend on i) the type of residence time distribution model (exponential, gamma or piston flow), ii) the mixing ratio between bank filtrate and local groundwater, and iii) the heterogeneity in the groundwater endmember. By accounting for mixing processes, we can show that radon can be used beyond the "5-fold half-life" (~20 days) commonly described in the literature as the upper limit for age dating purposes for radon. This method provides a simple and cost-efficient way to quantify residence times of bank filtrate on a regular basis without any addition of external substances to the aquifer.


Assuntos
Água Subterrânea , Radônio , Poluentes Químicos da Água , Radônio/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Poços de Água
7.
J Environ Radioact ; 208-209: 105980, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31238238

RESUMO

Radon (R86222n) as a hydrological tracer offers a method for studying short to medium term groundwater - surface water interactions. These high frequency processes play an important role in wetland hydrology and biogeochemistry and may influence their contribution to the global carbon cycle. Therefore, there is a definite need for robust methods to measure high resolution 222Rn time series in-situ. In this study we adapted and improved a membrane system to measure 222Rn continuously with a primary focus on a rapid response time and low power consumption. The membrane system was constructed using a hydrophobic capillary membrane and laboratory experiments were conducted to quantify the systems' response time to predefined 222Rn pulses. It was then deployed in a stream draining a riparian wetland. The new membrane system could reduce the response time by ≈ 60 % in comparison to the established silicone membrane. We could identify the behaviour of the system in response to dynamically changing 222Rn activities and suggest a new method using simple linear regression to quantify the systems' response when the response time concept is inapplicable. Finally, we were able to measure high temporal resolution 222Rn activities reliably over an extended field deployment (68 d). We conclude that the improved system fills a gap ensuring high temporal resolution while maintaining extended maintenance intervals. This allows the user to study high frequency hydrological processes in remote areas. This new membrane system can be used to detect fast changes in 222Rn activities improving the comprehension of the underlying hydrological processes.


Assuntos
Monitoramento de Radiação/métodos , Radônio/análise , Poluentes Radioativos da Água/análise , Hidrologia , Membranas Artificiais , Áreas Alagadas
8.
Sci Rep ; 9(1): 449, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679628

RESUMO

Phosphorus availability in soils is an important parameter influencing primary production in terrestrial ecosystems. Phosphorus limitation exists in many soils since a high proportion of soil phosphorus is stored in unavailable forms for plants, such as bound to iron minerals or stabilized organic matter. This is in spite of soils having a high amount of total soil phosphorus. The feasibility of silicon to mobilize phosphorus from strong binding sites of iron minerals has been shown for marine sediments but is less well studied in soils. Here we tested the effect of silicon on phosphorus mobilization for 143 Artic soils (representing contrasting soil characteristics), which have not been affected by agriculture or other anthropogenic management practices. In agreement with marine studies, silicon availabilities were significantly positive correlated to phosphorus mobilization in these soils. Laboratory experiments confirmed that silicon addition significantly increases phosphorus mobilization, by mobilizing Fe(II)-P phases from mineral surfaces. Silicon addition increased also soil respiration in phosphorus deficient soils. We conclude that silicon is a key component regulating mobilization of phosphorous in Arctic soils, suggesting that this may also be important for sustainable management of phosphorus availability in soils in general.

9.
Sci Rep ; 6: 37521, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869191

RESUMO

Cyclic changes in total solar irradiance (TSI) during the Holocene are known to affect global climatic conditions and cause cyclic climatic oscillations, e.g., Bond events and related changes of environmental conditions. However, the processes how changes in TSI affect climate and environment of the Southern Hemisphere, especially in southernmost South America, a key area for the global climate, are still poorly resolved. Here we show that highly sensitive proxies for aquatic productivity derived from sediments of a lake near the Chilean South Atlantic coast (53 °S) strongly match the cyclic changes in TSI throughout the Holocene. Intra-lake productivity variations show a periodicity of ~200-240 years coherent with the time series of TSI-controlled cosmogenic nuclide 10Be production. In addition TSI dependent periodicity of Bond events (~1500 years) appear to control wetness at the LH site indicated by mineral matter erosion from the catchment to the lake assumingly through shifts of the position of the southern westerly wind belt. Thus, both intra-lake productivity and wetness at the southernmost South America are directly or indirectly controlled by TSI.

10.
Environ Sci Technol ; 45(20): 8915-21, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21882884

RESUMO

²²²Rn is a natural radionuclide that is commonly used as tracer to quantify groundwater discharge to streams, rivers, lakes, and coastal environments. The use of sporadic point measurements provides little information about short- to medium-term processes (hours to weeks) at the groundwater-surface water interface. Here we present a novel method for high-resolution autonomous, and continuous, measurement of ²²²Rn in rivers and streams using a silicone diffusion membrane system coupled to a solid-state radon-in-air detector (RAD7). In this system water is pumped through a silicone diffusion tube placed inside an outer air circuit tube that is connected to the detector. ²²²Rn diffuses from the water into the air loop, and the ²²²Rn activity in the air is measured. By optimizing the membrane tube length, wall thickness, and water flow rates through the membrane, it was possible to quantify radon variations over times scales of about 3 h. The detection limit for the entire system with 20 min counting was 18 Bq m⁻³ at the 3σ level. Deployment of the system on a small urban stream showed that groundwater discharge is dynamic, with changes in ²²²Rn activity doubling on the scale of hours in response to increased stream flow.


Assuntos
Monitoramento Ambiental/instrumentação , Água Subterrânea/química , Membranas Artificiais , Monitoramento de Radiação/instrumentação , Radônio/análise , Radônio/química , Rios/química , Silicones/química , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA