Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 4(1): 100144, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38390466

RESUMO

Single-molecule and bulk biophysical approaches to study protein-DNA interactions on surface-immobilized nucleic acid templates typically rely on modifying the ends of linear DNA molecules to enable surface-DNA attachments. Unless both strands are constrained, this results in topologically free DNA molecules and the inability to observe supercoiling-dependent biological processes or requires additional means to micromanipulate the free DNA end to impose rotational constraints or induce supercoiling. We developed a method using RecA protein to induce the formation of a circularized compliment-stabilized D-loop. The resulting joint molecule is topologically closed, surface anchorable, and stable under microfluidic flow. Importantly, the method obviates the need for subsequent manipulation of surface-tethered DNA; tethered molecules remain supercoiled and retain accessibility to DNA-binding proteins. This approach adds to the toolkit for those studying processes on DNA that require supercoiled DNA templates or topologically constrained systems.

2.
Proc Natl Acad Sci U S A ; 119(39): e2208390119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122225

RESUMO

In bacterial cells, DNA damage tolerance is manifested by the action of translesion DNA polymerases that can synthesize DNA across template lesions that typically block the replicative DNA polymerase III. It has been suggested that one of these translesion DNA synthesis DNA polymerases, DNA polymerase IV, can either act in concert with the replisome, switching places on the ß sliding clamp with DNA polymerase III to bypass the template damage, or act subsequent to the replisome skipping over the template lesion in the gap in nascent DNA left behind as the replisome continues downstream. Evidence exists in support of both mechanisms. Using single-molecule analyses, we show that DNA polymerase IV associates with the replisome in a concentration-dependent manner and remains associated over long stretches of replication fork progression under unstressed conditions. This association slows the replisome, requires DNA polymerase IV binding to the ß clamp but not its catalytic activity, and is reinforced by the presence of the γ subunit of the ß clamp-loading DnaX complex in the DNA polymerase III holoenzyme. Thus, DNA damage is not required for association of DNA polymerase IV with the replisome. We suggest that under stress conditions such as induction of the SOS response, the association of DNA polymerase IV with the replisome provides both a surveillance/bypass mechanism and a means to slow replication fork progression, thereby reducing the frequency of collisions with template damage and the overall mutagenic potential.


Assuntos
DNA Polimerase beta , DNA/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Holoenzimas
3.
Nucleic Acids Res ; 44(6): 2727-41, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762979

RESUMO

In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , DNA Helicases/química , DNA Bacteriano/química , Exodesoxirribonucleases/química , Reparo de DNA por Recombinação , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Small ; 11(11): 1273-84, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25400244

RESUMO

Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single-molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface-coupled microscopy technique, such as tethered particle motion (TPM), nanopore-based sensing of biomolecules, or super-resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double-stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase-nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub-saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21-24 k(B)T) are obtained by comparing results from MT and stopped-flow bulk assays. Single-molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature-controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano-biotechnology.


Assuntos
DNA Helicases/química , DNA/química , Magnetismo/instrumentação , Micromanipulação/instrumentação , Microscopia/instrumentação , Técnicas de Sonda Molecular/instrumentação , DNA/ultraestrutura , DNA Helicases/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação/instrumentação , Ligação Proteica , Estresse Mecânico , Temperatura
5.
Biosens Bioelectron ; 61: 579-86, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24953846

RESUMO

Single-stranded DNA-binding protein (SSB) is a well characterized ubiquitous and essential bacterial protein involved in almost all aspects of DNA metabolism. Using the Bacillus subtilis SSB we have generated a reagentless SSB biosensor that can be used as a helicase probe in B. subtilis and closely related gram positive bacteria. We have demonstrated the utility of the probe in a DNA unwinding reaction using a helicase from Bacillus and for the first time, characterized the B. subtilis SSB's DNA binding mode switching and stoichiometry. The importance of SSB in DNA metabolism is not limited to simply binding and protecting ssDNA during DNA replication, as previously thought. It interacts with an array of partner proteins to coordinate many different aspects of DNA metabolism. In most cases its interactions with partner proteins is species-specific and for this reason, knowing how to produce and use cognate reagentless SSB biosensors in different bacteria is critical. Here we explain how to produce a B. subtilis SSB probe that exhibits 9-fold fluorescence increase upon binding to single stranded DNA and can be used in all related gram positive firmicutes which employ drastically different DNA replication and repair systems than the widely studied Escherichia coli. The materials to produce the B. subtilis SSB probe are commercially available, so the methodology described here is widely available unlike previously published methods for the E. coli SSB.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Bacillus/genética , Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Engenharia de Proteínas
6.
Nucleic Acids Res ; 42(9): 5633-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682829

RESUMO

In all domains of life, the resection of double-stranded DNA breaks to form long 3'-ssDNA overhangs in preparation for recombinational repair is catalyzed by the coordinated activities of DNA helicases and nucleases. In bacterial cells, this resection reaction is modulated by the recombination hotspot sequence Chi. The Chi sequence is recognized in cis by translocating helicase-nuclease complexes such as the Bacillus subtilis AddAB complex. Binding of Chi to AddAB results in the attenuation of nuclease activity on the 3'-terminated strand, thereby promoting recombination. In this work, we used stopped-flow methods to monitor the coupling of adenosine triphosphate (ATP) hydrolysis and DNA translocation and how this is affected by Chi recognition. We show that in the absence of Chi sequences, AddAB translocates processively on DNA at ∼2000 bp s(-1) and hydrolyses approximately 1 ATP molecule per base pair travelled. The recognition of recombination hotspots results in a sustained decrease in the translocation rate which is accompanied by a decrease in the ATP hydrolysis rate, such that the coupling between these activities and the net efficiency of DNA translocation is largely unchanged by Chi.


Assuntos
Bacillus subtilis/enzimologia , DNA Bacteriano/química , Exodesoxirribonucleases/química , Trifosfato de Adenosina/química , Bacillus subtilis/genética , DNA/química , DNA Bacteriano/genética , Hidrólise , Cinética , Recombinação Genética
7.
Proc Natl Acad Sci U S A ; 110(28): E2562-71, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798400

RESUMO

Double-stranded DNA break repair by homologous recombination is initiated by resection of free DNA ends to produce a 3'-ssDNA overhang. In bacteria, this reaction is catalyzed by helicase-nuclease complexes such as AddAB in a manner regulated by specific recombination hotspot sequences called Crossover hotspot instigator (Chi). We have used magnetic tweezers to investigate the dynamics of AddAB translocation and hotspot scanning during double-stranded DNA break resection. AddAB was prone to stochastic pausing due to transient recognition of Chi-like sequences, unveiling an antagonistic relationship between DNA translocation and sequence-specific DNA recognition. Pauses at bona fide Chi sequences were longer, were nonexponentially distributed, and resulted in an altered velocity upon restart of translocation downstream of Chi. We propose a model for the recognition of Chi sequences to explain the origin of pausing during failed and successful hotspot recognition.


Assuntos
Dano ao DNA , DNA/genética , Recombinação Genética
8.
EMBO J ; 31(6): 1568-78, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22307084

RESUMO

In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.


Assuntos
DNA Helicases/química , Desoxirribonucleases/química , Exodesoxirribonucleases/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...