Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Am J Hum Genet ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.

2.
Genome Med ; 16(1): 32, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355605

RESUMO

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento do Exoma
3.
EBioMedicine ; 100: 104983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38365322

RESUMO

BACKGROUND: Prenatal hCMV infections can lead to severe embryopathy and neurological sequelae in neonates. Screening during pregnancy is not recommended by global societies, as there is no effective therapy. Recently, several groups showed that maternal-fetal hCMV transmission can be strongly reduced by administering anti-viral agents early in pregnancy. This calls for a screening method to identify at risk pregnancies at an appropriate gestational age, with the possibility for large-scale enrolment. Non-Invasive Prenatal Testing (NIPT) for fetal aneuploidy screening early in pregnancy is already implemented in many countries and performed on a large-scale basis. We investigated the use of whole genome cell-free DNA (cfDNA) sequencing data, generated for the purpose of NIPT, as (pre-)screening tool to identify women with active hCMV-infections, eligible for therapy. METHODS: Coded raw sequencing NIPT data from 204,818 pregnant women from three testing laboratories were analyzed for the presence of hCMV-cfDNA. Samples were stratified by cfDNA-hCMV load. For validation and interpretation, diagnostic hCMV-qPCR and serology testing were performed on a subset of cfDNA-hCMV-positive (n = 112) and -negative (n = 127) samples. FINDINGS: In 1930 samples (0.94%) hCMV fragments were detected. Validation by hCMV-qPCR showed that samples with high cfDNA-hCMV load tested positive and cfDNA-hCMV-negative samples tested negative. In 32/112 cfDNA-hCMV-positive samples (28.6%) the serological profile suggested a recent primary infection: this was more likely in samples with high cfDNA-hCMV load (78.6%) than in samples with low cfDNA-hCMV load (11.0%). In none of the cfDNA-hCMV-negative samples serology was indicative of a recent primary infection. INTERPRETATION: Our study shows that large-scale (pre-)screening for both genetic fetal aberrations and active maternal hCMV infections during pregnancy can be combined in one cfDNA sequencing test, performed on a single blood sample, drawn in the first trimester of pregnancy. FUNDING: This work was partly funded by the Prenatal Screening Foundation Nijmegen, the Netherlands.


Assuntos
Ácidos Nucleicos Livres , Citomegalovirus , Recém-Nascido , Humanos , Feminino , Gravidez , Citomegalovirus/genética , Gestantes , Aneuploidia , Diagnóstico Pré-Natal/métodos
4.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293053

RESUMO

Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.

6.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
7.
Front Genet ; 14: 1234032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779911

RESUMO

Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.

8.
Nat Commun ; 14(1): 6845, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891200

RESUMO

The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , Humanos , Exoma/genética , Mutação INDEL , Variações do Número de Cópias de DNA , Análise de Sistemas , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
11.
Genes (Basel) ; 14(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37628625

RESUMO

Anophthalmia and microphthalmia (A/M) are among the most severe congenital developmental eye disorders. Despite the advancements in genome screening technologies, more than half of A/M patients do not receive a molecular diagnosis. We included seven consanguineous families affected with A/M from Pakistani cohort and an unknown molecular basis. Single gene testing of FOXE3 was performed, followed by genome sequencing for unsolved probands in order to establish a genetic diagnosis for these families. All seven families were provided with a genetic diagnosis. The identified variants were all homozygous, classified as (likely) pathogenic and present in an A/M-associated gene. Targeted FOXE3 sequencing revealed two previously reported pathogenic FOXE3 variants in four families. In the remaining families, genome sequencing revealed a known pathogenic PXDN variant, a novel 13bp deletion in VSX2, and one novel deep intronic splice variant in PXDN. An in vitro splice assay was performed for the PXDN splice variant which revealed a severe splicing defect. Our study confirmed the utility of genome sequencing as a diagnostic tool for A/M-affected individuals. Furthermore, the identification of a novel deep intronic pathogenic variant in PXDN highlights the role of non-coding variants in A/M-disorders and the value of genome sequencing for the identification of this type of variants.


Assuntos
Anoftalmia , Anormalidades do Olho , Microftalmia , Humanos , Anoftalmia/diagnóstico , Anoftalmia/genética , Microftalmia/diagnóstico , Microftalmia/genética , Mapeamento Cromossômico , Testes Genéticos
12.
PLoS Genet ; 19(8): e1010889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578974

RESUMO

Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Sequenciamento do Exoma , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , 17-Hidroxiesteroide Desidrogenases/genética
13.
Genome Med ; 15(1): 34, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158973

RESUMO

BACKGROUND: Long-read sequencing (LRS) techniques have been very successful in identifying structural variants (SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) more challenging. The introduction of PacBio HiFi sequencing makes LRS also suited for detecting small variation. Here we evaluate the ability of HiFi reads to detect de novo mutations (DNMs) of all types, which are technically challenging variant types and a major cause of sporadic, severe, early-onset disease. METHODS: We sequenced the genomes of eight parent-child trios using high coverage PacBio HiFi LRS (~ 30-fold coverage) and Illumina short-read sequencing (SRS) (~ 50-fold coverage). De novo substitutions, small indels, short tandem repeats (STRs) and SVs were called in both datasets and compared to each other to assess the accuracy of HiFi LRS. In addition, we determined the parent-of-origin of the small DNMs using phasing. RESULTS: We identified a total of 672 and 859 de novo substitutions/indels, 28 and 126 de novo STRs, and 24 and 1 de novo SVs in LRS and SRS respectively. For the small variants, there was a 92 and 85% concordance between the platforms. For the STRs and SVs, the concordance was 3.6 and 0.8%, and 4 and 100% respectively. We successfully validated 27/54 LRS-unique small variants, of which 11 (41%) were confirmed as true de novo events. For the SRS-unique small variants, we validated 42/133 DNMs and 8 (19%) were confirmed as true de novo event. Validation of 18 LRS-unique de novo STR calls confirmed none of the repeat expansions as true DNM. Confirmation of the 23 LRS-unique SVs was possible for 19 candidate SVs of which 10 (52.6%) were true de novo events. Furthermore, we were able to assign 96% of DNMs to their parental allele with LRS data, as opposed to just 20% with SRS data. CONCLUSIONS: HiFi LRS can now produce the most comprehensive variant dataset obtainable by a single technology in a single laboratory, allowing accurate calling of substitutions, indels, STRs and SVs. The accuracy even allows sensitive calling of DNMs on all variant levels, and also allows for phasing, which helps to distinguish true positive from false positive DNMs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Humanos , Alelos , Repetições de Microssatélites
14.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
15.
Hum Genomics ; 17(1): 39, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138343

RESUMO

BACKGROUND: Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. RESULTS: We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. CONCLUSION: We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Exoma/genética , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Humano/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética
16.
Ophthalmol Sci ; 3(4): 100303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37250922

RESUMO

Purpose: Myopia (nearsightedness) is a condition in which a refractive error (RE) affects vision. Although common variants explain part of the genetic predisposition (18%), most of the estimated 70% heritability is missing. Here, we investigate the contribution of rare genetic variation because this might explain more of the missing heritability in the more severe forms of myopia. In particular, high myopia can lead to blindness and has a tremendous impact on a patient and at the societal level. The exact molecular mechanisms behind this condition are not yet completely unraveled, but whole genome sequencing (WGS) studies have the potential to identify novel (rare) disease genes, explaining the high heritability. Design: Cross-sectional study performed in the Netherlands. Participants: We investigated 159 European patients with high myopia (RE > -10 diopters). Methods: We performed WGS using a stepwise filtering approach and burden analysis. The contribution of common variants was calculated as a genetic risk score (GRS). Main Outcome Measures: Rare variant burden, GRS. Results: In 25% (n = 40) of these patients, there was a high (> 75th percentile) contribution of common predisposing variants; that is, these participants had higher GRSs. In 7 of the remaining 119 patients (6%), deleterious variants in genes associated with known (ocular) disorders, such as retinal dystrophy disease (prominin 1 [PROM1]) or ocular development (ATP binding cassette subfamily B member 6 [ABCB6], TGFB induced factor homeobox 1 [TGIF1]), were identified. Furthermore, without using a gene panel, we identified a high burden of rare variants in 8 novel genes associated with myopia. The genes heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) (proportion in study population vs. the Genome Aggregation Database (GnomAD) 0.14 vs. 0.03, P = 4.22E-17), RNA binding motif protein 20 (RBM20) (0.15 vs. 0.06, P = 4.98E-05), and MAP7 domain containing 1 (MAP7D1) (0.19 vs. 0.06, P = 1.16E-10) were involved in the Wnt signaling cascade, melatonin degradation, and ocular development and showed most biologically plausible associations. Conclusions: We found different contributions of common and rare variants in low and high grade myopia. Using WGS, we identified some interesting candidate genes that could explain the high myopia phenotype in some patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

17.
EBioMedicine ; 92: 104621, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209535

RESUMO

BACKGROUND: Haematopoietic clones caused by somatic mutations with ≥2% variant allele frequency (VAF) increase with age and are linked to risk of haematological malignancies and cardiovascular disease. Recent observations suggest that smaller clones (VAF<2%) are also associated with adverse outcomes. Our aims were to determine the prevalence of clonal haematopoiesis driven by clones of variable sizes in individuals with obesity treated by usual care or bariatric surgery (a treatment that improves metabolic status), and to examine the expansion of clones in relation to age and metabolic dysregulation over up to 20 years. METHODS: Clonal haematopoiesis-driver mutations (CHDMs) were identified in blood samples from participants of the Swedish Obese Subjects intervention study. Using an ultrasensitive assay, we analysed single-timepoint samples from 1050 individuals treated by usual care and 841 individuals who had undergone bariatric surgery, and multiple-timepoint samples taken over 20 years from a subset (n = 40) of the individuals treated by usual care. FINDINGS: In this explorative study, prevalence of CHDMs was similar in the single-timepoint usual care and bariatric surgery groups (20.6% and 22.5%, respectively, P = 0.330), with VAF ranging from 0.01% to 31.15%. Clone sizes increased with age in individuals with obesity, but not in those who underwent bariatric surgery. In the multiple-timepoint analysis, VAF increased by on average 7% (range -4% to 24%) per year and rate of clone growth was negatively associated with HDL-cholesterol (R = -0.68, 1.74 E-04). INTERPRETATION: Low HDL-C was associated with growth of haematopoietic clones in individuals with obesity treated by usual care. FUNDING: The Swedish Research Council, The Swedish state under an agreement between the Swedish government and the county councils, the ALF (Avtal om Läkarutbildning och Forskning) agreement, The Swedish Heart-Lung Foundation, The Novo Nordisk Foundation, The European Research Council, The Netherlands Organisation for Scientific Research.


Assuntos
Cirurgia Bariátrica , Doenças Cardiovasculares , Humanos , Adulto Jovem , Adulto , Hematopoiese Clonal/genética , Obesidade/genética , Obesidade/complicações , Cirurgia Bariátrica/efeitos adversos , Mutação , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética
18.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976648

RESUMO

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
19.
Eur J Hum Genet ; 31(6): 654-662, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781956

RESUMO

Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.


Assuntos
Transtornos dos Movimentos , Distrofia Muscular de Duchenne , Humanos , Exoma , Variações do Número de Cópias de DNA , Éxons , Distrofia Muscular de Duchenne/genética , Transtornos dos Movimentos/genética
20.
Front Cell Dev Biol ; 11: 1112270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819107

RESUMO

Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...