Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 52, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693874

RESUMO

While the extraction of natural resources has been well documented and analysed at the national level, production trends at the level of individual mines are more difficult to uncover, mainly due to poor availability of mining data with sub-national detail. In this paper, we contribute to filling this gap by presenting an open database on global coal and metal mine production on the level of individual mines. It is based on manually gathered information from more than 1900 freely available reports of mining companies, where every data point is linked to its source document, ensuring full transparency. The database covers 1171 individual mines and reports mine-level production for 80 different materials in the period 2000-2021. Furthermore, also data on mining coordinates, ownership, mineral reserves, mining waste, transportation of mining products, as well as mineral processing capacities (smelters and mineral refineries) and production is included.

3.
Proc Natl Acad Sci U S A ; 119(38): e2118273119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095187

RESUMO

Growing demand for minerals continues to drive deforestation worldwide. Tropical forests are particularly vulnerable to the environmental impacts of mining and mineral processing. Many local- to regional-scale studies document extensive, long-lasting impacts of mining on biodiversity and ecosystem services. However, the full scope of deforestation induced by industrial mining across the tropics is yet unknown. Here, we present a biome-wide assessment to show where industrial mine expansion has caused the most deforestation from 2000 to 2019. We find that 3,264 km2 of forest was directly lost due to industrial mining, with 80% occurring in only four countries: Indonesia, Brazil, Ghana, and Suriname. Additionally, controlling for other nonmining determinants of deforestation, we find that mining caused indirect forest loss in two-thirds of the investigated countries. Our results illustrate significant yet unevenly distributed and often unmanaged impacts on these biodiverse ecosystems. Impact assessments and mitigation plans of industrial mining activities must address direct and indirect impacts to support conservation of the world's tropical forests.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Mineração , Conservação dos Recursos Naturais/métodos
4.
Sci Data ; 9(1): 433, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869082

RESUMO

The growing demand for minerals has pushed mining activities into new areas increasingly affecting biodiversity-rich natural biomes. Mapping the land use of the global mining sector is, therefore, a prerequisite for quantifying, understanding and mitigating adverse impacts caused by mineral extraction. This paper updates our previous work mapping mining sites worldwide. Using visual interpretation of Sentinel-2 images for 2019, we inspected more than 34,000 mining locations across the globe. The result is a global-scale dataset containing 44,929 polygon features covering 101,583 km2 of large-scale as well as artisanal and small-scale mining. The increase in coverage is substantial compared to the first version of the dataset, which included 21,060 polygons extending over 57,277 km2. The polygons cover open cuts, tailings dams, waste rock dumps, water ponds, processing plants, and other ground features related to the mining activities. The dataset is available for download from https://doi.org/10.1594/PANGAEA.942325 and visualisation at www.fineprint.global/viewer .

5.
Sci Rep ; 11(1): 21804, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750428

RESUMO

Deforestation of the Amazon rainforest is a threat to global climate, biodiversity, and many other ecosystem services. In order to address this threat, an understanding of the drivers of deforestation processes is required. Spillover effects and factors that differ across locations and over time play important roles in these processes. They are largely disregarded in applied research and thus in the design of evidence-based policies. In this study, we model connectivity between regions and consider heterogeneous effects to gain more accurate quantitative insights into the inherent complexity of deforestation. We investigate the impacts of agriculture in Mato Grosso, Brazil, for the period 2006-2017 considering spatial spillovers and varying impacts over time and space. Spillovers between municipalities that emanate from croplands in the Amazon appear as the major driver of deforestation, with no direct effects from agriculture in recent years. This suggests a moderate success of the Soy Moratorium and Cattle Agreements, but highlights their inability to address indirect effects. We find that the neglect of the spatial dimension and the assumption of homogeneous impacts lead to distorted inference. Researchers need to be aware of the complex and dynamic processes behind deforestation, in order to facilitate effective policy design.

6.
Sci Data ; 7(1): 289, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901028

RESUMO

The area used for mineral extraction is a key indicator for understanding and mitigating the environmental impacts caused by the extractive sector. To date, worldwide data products on mineral extraction do not report the area used by mining activities. In this paper, we contribute to filling this gap by presenting a new data set of mining extents derived by visual interpretation of satellite images. We delineated mining areas within a 10 km buffer from the approximate geographical coordinates of more than six thousand active mining sites across the globe. The result is a global-scale data set consisting of 21,060 polygons that add up to 57,277 km2. The polygons cover all mining above-ground features that could be identified from the satellite images, including open cuts, tailings dams, waste rock dumps, water ponds, and processing infrastructure. The data set is available for download from https://doi.org/10.1594/PANGAEA.910894 and visualization at www.fineprint.global/viewer .

7.
J Ind Ecol ; 24(3): 548-563, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32612346

RESUMO

Input-output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input-output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply-use dataset and apply them to the same single-region input-output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi-regional input-output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product-level results can vary by several orders of magnitude. The GMRIO-based comparison further reveals that for a few countries the supply-extension result can be twice the size of the use-extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life-cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.

8.
J Ind Ecol ; 23(4): 946-958, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598061

RESUMO

In various international policy processes such as the UN Sustainable Development Goals, an urgent demand for robust consumption-based indicators of material flows, or material footprints (MFs), has emerged over the past years. Yet, MFs for national economies diverge when calculated with different Global Multiregional Input-Output (GMRIO) databases, constituting a significant barrier to a broad policy uptake of these indicators. The objective of this paper is to quantify the impact of data deviations between GMRIO databases on the resulting MF. We use two methods, structural decomposition analysis and structural production layer decomposition, and apply them for a pairwise assessment of three GMRIO databases, EXIOBASE, Eora, and the OECD Inter-Country Input-Output (ICIO) database, using an identical set of material extensions. Although all three GMRIO databases accord for the directionality of footprint results, that is, whether a countries' final demand depends on net imports of raw materials from abroad or is a net exporter, they sometimes show significant differences in level and composition of material flows. Decomposing the effects from the Leontief matrices (economic structures), we observe that a few sectors at the very first stages of the supply chain, that is, raw material extraction and basic processing, explain 60% of the total deviations stemming from the technology matrices. We conclude that further development of methods to align results from GMRIOs, in particular for material-intensive sectors and supply chains, should be an important research priority. This will be vital to strengthen the uptake of demand-based material flow indicators in the resource policy context.

10.
Environ Sci Technol ; 51(11): 6360-6366, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28548494

RESUMO

Environmental footprints are increasingly used to quantify and compare environmental impacts of for example products, technologies, households, or nations. This has resulted in a multitude of footprint indicators, ranging from relatively simple measures of resource use (water, energy, materials) to integrated measures of eventual damage (for example, extinction of species). Yet, the possible redundancies among these different footprints have not yet been quantified. This paper analyzes the relationships between two comprehensive damage footprints and four resource footprints associated with 976 products. The resource footprints accounted for >90% of the variation in the damage footprints. Human health damage was primarily associated with the energy footprint, via emissions resulting from fossil fuel combustion. Biodiversity damage was mainly related to the energy and land footprints, the latter being mainly determined by agriculture and forestry. Our results indicate that relatively simple resource footprints are highly representative of damage to human health and biodiversity.


Assuntos
Agricultura , Biodiversidade , Agricultura Florestal , Poluentes Ambientais , Combustíveis Fósseis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...