Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(3)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971886

RESUMO

While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multiomics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Among oncologic ROS, H2O2 specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine γ-lyase (CTH), which converts cystathionine to the nonessential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Cistationina/uso terapêutico , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Multiômica , Hidrogéis
2.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865128

RESUMO

While the poor prognosis of glioblastoma arises from the invasion of a subset of tumor cells, little is known of the metabolic alterations within these cells that fuel invasion. We integrated spatially addressable hydrogel biomaterial platforms, patient site-directed biopsies, and multi-omics analyses to define metabolic drivers of invasive glioblastoma cells. Metabolomics and lipidomics revealed elevations in the redox buffers cystathionine, hexosylceramides, and glucosyl ceramides in the invasive front of both hydrogel-cultured tumors and patient site-directed biopsies, with immunofluorescence indicating elevated reactive oxygen species (ROS) markers in invasive cells. Transcriptomics confirmed upregulation of ROS-producing and response genes at the invasive front in both hydrogel models and patient tumors. Amongst oncologic ROS, hydrogen peroxide specifically promoted glioblastoma invasion in 3D hydrogel spheroid cultures. A CRISPR metabolic gene screen revealed cystathionine gamma lyase (CTH), which converts cystathionine to the non-essential amino acid cysteine in the transsulfuration pathway, to be essential for glioblastoma invasion. Correspondingly, supplementing CTH knockdown cells with exogenous cysteine rescued invasion. Pharmacologic CTH inhibition suppressed glioblastoma invasion, while CTH knockdown slowed glioblastoma invasion in vivo. Our studies highlight the importance of ROS metabolism in invasive glioblastoma cells and support further exploration of the transsulfuration pathway as a mechanistic and therapeutic target.

3.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856115

RESUMO

Cancer-associated fibroblasts (CAFs) were presumed absent in glioblastoma given the lack of brain fibroblasts. Serial trypsinization of glioblastoma specimens yielded cells with CAF morphology and single-cell transcriptomic profiles based on their lack of copy number variations (CNVs) and elevated individual cell CAF probability scores derived from the expression of 9 CAF markers and absence of 5 markers from non-CAF stromal cells sharing features with CAFs. Cells without CNVs and with high CAF probability scores were identified in single-cell RNA-Seq of 12 patient glioblastomas. Pseudotime reconstruction revealed that immature CAFs evolved into subtypes, with mature CAFs expressing actin alpha 2, smooth muscle (ACTA2). Spatial transcriptomics from 16 patient glioblastomas confirmed CAF proximity to mesenchymal glioblastoma stem cells (GSCs), endothelial cells, and M2 macrophages. CAFs were chemotactically attracted to GSCs, and CAFs enriched GSCs. We created a resource of inferred crosstalk by mapping expression of receptors to their cognate ligands, identifying PDGF and TGF-ß as mediators of GSC effects on CAFs and osteopontin and HGF as mediators of CAF-induced GSC enrichment. CAFs induced M2 macrophage polarization by producing the extra domain A (EDA) fibronectin variant that binds macrophage TLR4. Supplementing GSC-derived xenografts with CAFs enhanced in vivo tumor growth. These findings are among the first to identify glioblastoma CAFs and their GSC interactions, making them an intriguing target.


Assuntos
Fibroblastos Associados a Câncer , Glioblastoma , Humanos , Glioblastoma/genética , Transcriptoma , Variações do Número de Cópias de DNA , Células Endoteliais , Análise de Sequência de RNA
4.
Oper Neurosurg (Hagerstown) ; 24(6): 565-571, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897093

RESUMO

BACKGROUND: For transforaminal lumbar interbody fusion (TLIF), there are equally good open and minimally invasive surgery (MIS) options. OBJECTIVE: To determine if frailty has a differential effect on outcome for open vs MIS TLIF. METHODS: We performed a retrospective review of 115 TLIF surgeries (1-3 levels) for lumbar degenerative disease performed at a single center; 44 MIS transforaminal interbody fusions and 71 open TLIFs were included. All patients had at least a 2-year follow up, and any revision surgery during that time was recorded. The Adult Spinal Deformity Frailty Index (ASD-FI) was used to separate patients into nonfrail (ASD-FI < 0.3) and frail (ASD-FI > 0.3) cohorts. The primary outcome variables were revision surgery and discharge disposition. Univariate analyses were performed to reveal associations in demographic, radiographic, and surgical data with the outcome variables. Multivariate logistic regression was used to assess independent predictors of outcome. RESULTS: Frailty uniquely predicted both reoperation (odds ratio 8.1, 95% CI 2.5-26.1, P = .0005) and discharge to a location other than home (odds ratio 3.9, 95% CI 1.2-12.7, P = .0239). Post hoc analysis indicated that frail patients undergoing open TLIF had a higher revision surgery rate (51.72%) compared with frail patients undergoing MIS-TLIF (16.7%). Nonfrail patients undergoing open and MIS TLIF had a revision surgery rate of 7.5% and 7.7%, respectively. CONCLUSION: Frailty was associated with increased revision rate and increased probability to discharge to a location other than home after open transforaminal interbody fusions, but not MIS transforaminal interbody fusions. These data suggest that patients with high frailty scores may benefit from MIS-TLIF procedures.


Assuntos
Fragilidade , Fusão Vertebral , Adulto , Humanos , Vértebras Lombares/cirurgia , Resultado do Tratamento , Fragilidade/complicações , Fragilidade/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Fusão Vertebral/métodos
5.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993266

RESUMO

Tumor-associated neutrophil (TAN) effects on glioblastoma biology remain under-characterized. We show here that 'hybrid' neutrophils with dendritic features - including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate MHCII-dependent T cell activation - accumulate intratumorally and suppress tumor growth in vivo . Trajectory analysis of patient TAN scRNA-seq identifies this phenotype as a polarization state which is distinct from canonical cytotoxic TANs and differentiates intratumorally from immature precursors absent in circulation. Rather, these hybrid-inducible immature neutrophils - which we identified in patient and murine glioblastomas - arise from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a potent contributor of antitumoral myeloid APCs, including hybrid TANs and dendritic cells, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow - such as intracalvarial AMD3100 whose survival prolonging-effect in GBM we demonstrate - present therapeutic potential.

6.
Semin Cancer Biol ; 86(Pt 3): 532-541, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35276342

RESUMO

Immunotherapies seek to unleash the immune system against cancer cells. While a variety of immunotherapies exist, one of the most commonly used is immune checkpoint blockade, which refers to the use of antibodies to interfere with immunosuppressive signaling through immune checkpoint molecules. Therapies against various checkpoints have had success in the clinic across cancer types. However, the efficacy of checkpoint inhibitors has varied across different cancer types and non-responsive patient populations have emerged. Non-responders to these therapies have highlighted the importance of understanding underlying mechanisms of resistance in order to predict which patients will respond and to tailor individual treatment paradigms. In this review we discuss the literature surrounding tumor mediated mechanisms of immune checkpoint resistance. We also describe efforts to overcome resistance and combine checkpoint inhibitors with additional immunotherapies. Finally, we provide insight into the future of immune checkpoint blockade, including the need for improved preclinical modeling and predictive biomarkers to facilitate personalized cancer treatments for patients.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
7.
Sci Rep ; 12(1): 1464, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087132

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Microambiente Tumoral/imunologia , Ativação Metabólica/imunologia , Antígenos CD/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Metabolômica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
8.
Front Genet ; 12: 750675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976006

RESUMO

Glioblastoma is the most common malignant primary brain tumor in adults. Despite treatment consisting of surgical resection followed by radiotherapy and adjuvant chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes in using immunotherapies to treat a number of solid and hematologic cancers have led to a growing interest in harnessing the immune system to target glioblastoma. Several studies have examined the efficacy of various immunotherapies, including checkpoint inhibitors, vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical and clinical settings. However, these therapies have yielded mixed results at best when applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect the immunoprivileged environment of the brain, more recent studies have revealed immune escape mechanisms created by the tumor itself and adaptive resistance acquired in response to therapy. Several of these resistance mechanisms hijack key signaling pathways within the immune system to create a protumoral microenvironment. In this review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights gained from the studies summarized here may help pave the way for novel therapies to overcome barriers that have thus far limited the success of immunotherapy in glioblastoma.

9.
J Neurosurg ; 133(6): 1913-1921, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675693

RESUMO

OBJECTIVE: Neurosurgery is consistently one of the most competitive specialties for resident applicants. The emphasis on research in neurosurgery has led to an increasing number of publications by applicants seeking a successful residency match. The authors sought to produce a comprehensive analysis of research produced by neurosurgical applicants and to establish baseline data of neurosurgery applicant research productivity given the increased emphasis on research output for successful residency match. METHODS: A retrospective review of publication volume for all neurosurgery interns in 2009, 2011, 2014, 2016, and 2018 was performed using PubMed and Google Scholar. Missing data rates were 11% (2009), 9% (2011), and < 5% (all others). The National Resident Matching Program report "Charting Outcomes in the Match" (ChOM) was interrogated for total research products (i.e., abstracts, presentations, and publications). The publication rates of interns at top 40 programs, students from top 20 medical schools, MD/PhD applicants, and applicants based on location of residency program and medical school were compared statistically against all others. RESULTS: Total publications per neurosurgery intern (mean ± SD) based on PubMed and Google Scholar were 5.5 ± 0.6 in 2018 (1.7 ± 0.3, 2009; 2.1 ± 0.3, 2011; 2.6 ± 0.4, 2014; 3.8 ± 0.4, 2016), compared to 18.3 research products based on ChOM. In 2018, the mean numbers of publications were as follows: neurosurgery-specific publications per intern, 4.3 ± 0.6; first/last author publications, 2.1 ± 0.3; neurosurgical first/last author publications, 1.6 ± 0.2; basic science publications, 1.5 ± 0.2; and clinical research publications, 4.0 ± 0.5. Mean publication numbers among interns at top 40 programs were significantly higher than those of all other programs in every category (p < 0.001). Except for mean number of basic science publications (p = 0.1), the mean number of publications was higher for interns who attended a top 20 medical school than for those who did not (p < 0.05). Applicants with PhD degrees produced statistically more research in all categories (p < 0.05) except neurosurgery-specific (p = 0.07) and clinical research (p = 0.3). While there was no statistical difference in publication volume based on the geographical location of the residency program, students from medical schools in the Western US produced more research than all other regions (p < 0.01). Finally, research productivity did not correlate with likelihood of medical students staying at their home institution for residency. CONCLUSIONS: The authors found that the temporal trend toward increased total research products over time in neurosurgery applicants was driven mostly by increased nonindexed research (abstracts, presentations, chapters) rather than by increased peer-reviewed publications. While we also identified applicant-specific factors (MD/PhDs and applicants from the Western US) and an outcome (matching at research-focused institutions) associated with increased applicant publications, further work will be needed to determine the emphasis that programs and applicants will need to place on these publications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...