Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 73(11): 813-828, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695062

RESUMO

Fugitive dust emissions play an important role in urban air quality. Much research on fugitive dust's effects has focused on human health and societal impacts, with limited work investigating effects on other species. The endangered Apodemia mormo langei butterfly is endemic to the Antioch Dunes, a small area on the south bank of the San Joaquin River in northern California, largely protected as a National Wildlife Refuge. Between the two protected portions of the dunes is a gypsum processing facility. Deposition of gypsum dust may adversely affect endangered insects, especially in their vulnerable larval life stage. Persistent westerly winds blow from the western section of the refuge, across the industrial facility, to the eastern protected dune area. Ambient particulate matter (PM) was collected at 30 sites in both sections of the refuge using passive samplers deployed at times matching the butterfly life cycle. The prevailing wind maintained upwind-downwind sampling orientation throughout the study. PM samples were analyzed for total mass, and elemental composition via X-ray fluorescence. Downwind concentrations of gypsum-related elements were between 4 (strontium) and 12 (sulfur) times higher than upwind loadings, suggesting deposition of PM from the gypsum facility. The effect of fugitive emissions was strongest at the industrial facility's fenceline, closest to a conveyor belt that loads gypsum. Combined with documented reductions in insect larval longevity when exposed to gypsum dust, the results suggest that gypsum deposition may be affecting the ecosystem and endangered species in the downwind unit of the Antioch Dunes National Wildlife Refuge.Implications: Fugitive dust has impacts not only on humans, but on other organisms. The Antioch Dunes National Wildlife Refuge (ADNWR) in California, set aside to protect the endangered Apodemia mormo langei butterfly, consists of two land units separated by a gypsum processing facility in between them. In this study, we demonstrate fugitive gypsum dust deposition on the downwind unit of the ADNWR, which may impact the endangered butterfly and its ecosystem.


Assuntos
Poluentes Atmosféricos , Poeira , Humanos , Animais , Poeira/análise , Poluentes Atmosféricos/análise , Sulfato de Cálcio , Animais Selvagens , Ecossistema , Monitoramento Ambiental , Material Particulado/análise , California
2.
Chem Mater ; 35(3): 1168-1176, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818586

RESUMO

Non-crystalline Li-ion solid electrolytes (SEs), such as lithium phosphorus oxynitride, can uniquely enable high-rate solid-state battery operation over thousands of cycles in thin film form. However, they are typically produced by expensive and low throughput vacuum deposition, limiting their wide application and study. Here, we report non-crystalline SEs of composition Li-Al-P-O (LAPO) with ionic conductivities > 10-7 S cm-1 at room temperature made by spin coating from aqueous solutions and subsequent annealing in air. Homogenous, dense, flat layers can be synthesized with submicrometer thickness at temperatures as low as 230 °C. Control of the composition is shown to significantly affect the ionic conductivity, with increased Li and decreased P content being optimal, while higher annealing temperatures result in decreased ionic conductivity. Activation energy analysis reveals a Li-ion hopping barrier of ≈0.4 eV. Additionally, these SEs exhibit low room temperature electronic conductivity (< 10-11 S cm-1) and a moderate Young's modulus of ≈54 GPa, which may be beneficial in preventing Li dendrite formation. In contact with Li metal, LAPO is found to form a stable but high impedance passivation layer comprised of Al metal, Li-P, and Li-O species. These findings should be of value when engineering non-crystalline SEs for Li-metal batteries with high energy and power densities.

3.
J Fungi (Basel) ; 9(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36675904

RESUMO

Coccidioidomycosis (Valley fever) has been a known health threat in the United States (US) since the 1930s, though not all states are currently required to report disease cases. Texas, one of the non-reporting states, is an example of where both historical and contemporary scientific evidence define the region as endemic, but we don't know disease incidence in the state. Mandating coccidioidomycosis as a reportable disease across more US states would increase disease awareness, improve clinical outcomes, and help antifungal drug and vaccine development. It would also increase our understanding of where the disease is endemic and the relationships between environmental conditions and disease cases. This is true for other nations in North and South America that are also likely endemic for coccidioidomycosis, especially Mexico. This commentary advocates for US state and territory epidemiologists to define coccidioidomycosis as a reportable disease and encourages disease surveillance in other endemic regions across North and South America in order to protect human health and reduce disease burden.

4.
Environ Res ; 216(Pt 3): 114606, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309211

RESUMO

Dry playa surfaces can be extremely vulnerable to disturbance which breaks their surface crusts resulting in increased aeolian sand and dust emissions. Trampling by livestock and motor vehicles is an important source of this disturbance. The Hamoun Lakes in the Sistan region of Iran are a major source area of dust storms which are causing damage to infrastructure and communities. This study performed portable wind tunnel tests of controlled surface disturbance by animals (cow, sheep) and motor vehicles (automobile, motorcycle) on a silty playa surface of Hamoun Saberi lake. The aim of this study was to assess the effect of different levels of trampling and disturbed surfaces by both vehicles and livestock on dust emission at wind speeds of 6 and 12 m s-1. A significant increase of sediment emission was found with increased number of passes of vehicles and livestock and the degree of surface disturbance, more so at the high wind speed (12 m s-1). No significant differences were observed between a 10-20% disturbance level and an undisturbed surface, but statistically significant differences became apparent when disturbances reached 50-60% to 90-100% compared to undisturbed surfaces. Greater emission rates were reached by disturbances provided by automobile and cow compared to motorcycle and sheep, indicating greater trampling effects of automobile and cow likely related to greater weight and larger footprint. The automobile was the most surface-destructive of the four anthropogenic disturbances, providing emission in a lower number of passes compared to the motorcycle, cow and sheep. Better management of vehicle and livestock allocation on playas subject to disturbance, such as the Hamoun Lakes, will be a useful strategy to reduce disturbance and the frequency and intensity of dust storms.


Assuntos
Poeira , Veículos Automotores , Ovinos , Animais , Poeira/análise , Irã (Geográfico)
5.
Geohealth ; 6(8): e2022GH000642, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949254

RESUMO

We discuss several issues raised by Comrie (2021, https://doi.org/10.1029/2021GH000504), which uses a crowdsourced data set to study dust storms and coccidioidomycosis (Valley fever). There is inconsistency in the term "dust storm" used by science communities. The dust data from National Oceanic and Atmospheric Administration Storm Events Database are from diverse sources, unsuitable for assessing dust-coccidioidomycosis relationships. Population exposure to dust or Coccidioides needs to consider the frequency, magnitude, and duration of dust events. Given abundant evidence that dust storms are a viable driver to transport pathogens, it is in best public interest to advocate dust storms may put people at risk for contracting Valley fever.

6.
Environ Sci Technol ; 55(5): 2869-2877, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587619

RESUMO

Atomic chlorine (Cl•) affects air quality and atmospheric oxidizing capacity. Nitryl chloride (ClNO2) - a common Cl• source-forms when chloride-containing aerosols react with dinitrogen pentoxide (N2O5). A recent study showed that saline lakebed (playa) dust is an inland source of particulate chloride (Cl-) that generates high ClNO2. However, the underlying physiochemical factors responsible for observed yields are poorly understood. To elucidate these controlling factors, we utilized single particle and bulk techniques to determine the chemical composition and mineralogy of playa sediment and dust samples from the southwest United States. Single particle analysis shows trace highly hygroscopic magnesium and calcium Cl-containing minerals are present and likely facilitate ClNO2 formation at low humidity. Single particle and mineralogical analysis detected playa sediment organic matter that hinders N2O5 uptake as well as 10 Å-clay minerals (e.g., Illite) that compete with water and chloride for N2O5. Finally, we show that the composition of the aerosol surface, rather than the bulk, is critical in ClNO2 formation. These findings underscore the importance of mixing state, competing reactions, and surface chemistry on N2O5 uptake and ClNO2 yield for playa dusts and, likely, other aerosol systems. Therefore, consideration of particle surface composition is necessary to improve ClNO2 and air quality modeling.


Assuntos
Poluição do Ar , Poeira , Aerossóis , Cloro , Carvão Mineral
7.
Sci Total Environ ; 755(Pt 1): 142461, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022463

RESUMO

Exploring the effects of drought and land use/land cover (LULC) on aeolian dust emission is important to enhance dust models to account for anthropogenic land surface change. Hitherto, there has been no systematic effort to quantitatively estimate associations between LULC and drought with the number of dust point sources as a surrogate for emission on both local and global levels. Previously, we created a dataset of dust emission point sources in the southwestern United States (U.S.) during the years 2001-2016, including a period of extreme drought. However, that work did not investigate the effects of drought on the detected dust point sources. Here, we used that dataset to test the hypothesis that there is a statistically significant association between drought level and LULC that may contribute to the number of dust point sources in the Southern Great Plains and Chihuahuan Desert regions of the U.S. The spatio-temporal analysis showed that the geographic mean center for all the dust points, as well as the majority of the annual geographic mean centers between 2001 and 2016, is located in the Southern High Plains. Areas suffering from severe to exceptional drought tend to attract the annual geographic mean center of dust points. The chi-square analysis results showed a significant association between land cover type (as defined in the National Land Cover Database) and drought level with the number of dust point sources (χ2 (6) = 45.54, р < 0.001), thus supporting the proposed hypothesis. Results from this study indicate that human activities in dust-prone regions have clear potential to worsen the negative impacts of drought by changing LULC and increasing erodibility in multiple ways. This study paves the way for future efforts that can utilize more data and conduct more robust statistical analysis of the drought-LULC-dust linkage on both regional and global scales.


Assuntos
Conservação dos Recursos Naturais , Secas , Poeira , Humanos , Sudoeste dos Estados Unidos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33344111

RESUMO

In drylands around the world, ephemeral lakes (playas) are common. Dry, wind-erodible playa sediments are potent local and regional sources of dust and PM10 (airborne particles with diameters less than 10 µm). Dust clouds often cause sudden and/or prolonged loss of visibility to travelers on downwind roadways. Lordsburg Playa, in southwestern New Mexico, USA is bisected by Interstate Highway 10. Dust storms emanating from the playa have been responsible for numerous visibility-related road closures (including 39 road closures between 2012 and 2019) causing major economic losses, in addition to well over a hundred dust-related vehicle crashes causing at least 41 lost lives in the last 53 years. In order to improve understanding of the surfaces responsible for the dust emissions, we investigated the critical wind friction velocity thresholds and the dust emissivities of surfaces representing areas typical of Lordsburg Playa's stream deltas, shorelines, and ephemerally flooded lakebed using a Portable In-Situ Wind ERosion Laboratory (PI-SWERL). Mean threshold friction velocities for PM10 entrainment ranged from less than 0.30 m s- 1 for areas in the delta and shoreline to greater than 0.55 m s- 1 for ephemerally flooded areas of the lakebed. Similarly, we quantified mean PM10 vertical flux rates ranging from less than 500 µg m- 2 s- 1 for ephemerally flooded areas of lakebed to nearly 25,000 µg m- 2 s- 1 for disturbed delta surfaces. The unlimited PM10 supply of the relatively coarse sediments along the western shoreline is problematic and indicates that this may be the source area for longer-term visibility reducing dust events and should be a focus area for dust mitigation efforts.

9.
Environ Sci Technol ; 53(13): 7442-7452, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31117541

RESUMO

Nitryl chloride (ClNO2), formed when dinitrogen pentoxide (N2O5) reacts with chloride-containing aerosol, photolyzes to produce chlorine radicals that facilitate the formation of tropospheric ozone. ClNO2 has been measured in continental areas; however, the sources of particulate chloride required to form ClNO2 in inland regions remain unclear. Dust emitted from saline playas (e.g., dried lakebeds) contains salts that can potentially form ClNO2 in inland regions. Here, we present the first laboratory measurements demonstrating the production of ClNO2 from playa dusts. N2O5 reactive uptake coefficients (γN2O5) ranged from ∼10-3 to 10-1 and ClNO2 yields (φClNO2) were >50% for all playas tested except one. In general, as the soluble ion fraction of playa dusts increases, γN2O5 decreases and φClNO2 increases. We attribute this finding to a transition from aerosol surfaces dominated by silicates that react efficiently with N2O5 and produce little ClNO2 to aerosols that behave like deliquesced chloride-containing salts that generate high yields of ClNO2. Molecular bromine (Br2) and nitryl bromide (BrNO2) were also detected, highlighting that playas facilitate the heterogeneous production of brominated compounds. Our results suggest that parameterizations and models should be updated to include playas as an inland source of aerosol chloride capable of efficiently generating ClNO2.


Assuntos
Poeira , Ozônio , Aerossóis , Cloretos , Cloro
10.
Sci Total Environ ; 621: 1023-1032, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102198

RESUMO

Despite the widespread media attention of chain-reaction traffic incidents and property damage caused by windblown dust in the U.S. and elsewhere in the world, very few studies have provided in-depth analysis on this issue. Remote sensing and field observations reveal that wind erosion in the southwestern U.S. typically occurs in localized source areas, characterized as "hotspots", while most of the landscape is not eroding. In this study, we identified the spatial and temporal distribution patterns of hotspots that may contribute dust blowing onto highways in the southwestern U.S. We further classified the hotspots for the potential of blowing dust production based upon field observations and wind erosion modeling. Results of land use and land cover show that shrubland, grassland, and cropland accounted for 42%, 31%, and 21% of the overall study area, respectively. However, of the 620 total hotspots identified, 164 (26%), 141 (22%), and 234 (38%) are located on shrubland, grassland, and cropland, respectively. Barren land represented 0.9% of the land area but 8% of the dust hotspots. While a majority of these hotspots are located close to highways, we focused on 55 of them, which are located <1km to adjacent highways and accessible via non-private roads. Field investigations and laboratory analysis showed that soils at these hotspot sites are dominated by sand and silt particles with threshold shear velocities ranging from 0.17-0.78m s-1, largely depending on the land use of the hotspot sites. Dust emission modeling showed that 13 hotspot sites could produce annual emissions >3.79kg m-2, yielding highly hazardous dust emissions to ground transportation with visibility <200m. Results of location, timing, and magnitude of the dust production at the hotspots are critical information for highway authorities to make informed and timely management decisions when wind events strike.

11.
Geophys Res Lett ; 44(9): 4304-4312, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30166741

RESUMO

Climate models have consistently projected a drying trend in the southwestern United States, aiding speculation of increasing dust storms in this region. Long-term climatology is essential to documenting the dust trend and its response to climate variability. We have reconstructed long-term dust climatology in the western United States, based on a comprehensive dust identification method and continuous aerosol observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. We report here direct evidence of rapid intensification of dust storm activity over American deserts in the past decades (1988-2011), in contrast to reported decreasing trends in Asia and Africa. The frequency of windblown dust storms has increased 240% from 1990s to 2000s. This dust trend is associated with large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation. We further investigate the relationship between dust and Valley fever, a fast-rising infectious disease caused by inhaling soil-dwelling fungus (Coccidioides immitis and C. posadasii) in the southwestern United States. The frequency of dust storms is found to be correlated with Valley fever incidences, with a coefficient (r) comparable to or stronger than that with other factors believed to control the disease in two endemic centers (Maricopa and Pima County, Arizona).

12.
Environ Sci Technol ; 51(3): 1348-1356, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28005339

RESUMO

Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of AFHH = 2.20 ± 0.60 and BFHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.


Assuntos
Aerossóis , Poeira , Clima , Sais , Molhabilidade
13.
Environ Res ; 111(8): 1148-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21782162

RESUMO

BACKGROUND: El Paso County (Texas) is prone to still air inversions and is one of the dust "hot spots" in North America. In this context, we examined the sub-lethal effects of airborne dust and low wind events on human respiratory health (i.e., asthma and acute bronchitis) between 2000 and 2003, when 110 dust and 157 low wind events occurred. Because environmental conditions may not affect everyone the same, we explored the effects of dust and low wind within three age groups (children, adults, and the elderly), testing for effect modifications by sex and insurance status, while controlling for weather and air pollutants. METHODS: We used a case-crossover design using events matched with referent days on the same day-of-the-week, month, and year with conditional logistic regression to estimate the probability of hospital admission, while controlling for apparent temperature (lag 1), nitrogen dioxide, and particulate matter of 2.5µm or less. RESULTS: Children (aged 1-17) were 1.19 (95% confidence interval: 1.00-1.41) times more likely to be hospitalized for asthma three days after a low wind event, and 1.33 (95% CI: 1.01-1.75) times more likely to be hospitalized for acute bronchitis one day after a dust event than on a clear day. Girls were more sensitive to acute bronchitis hospitalizations after dust events (1.83, 95% CI: 1.09-3.08) than boys, but less sensitive than boys to acute bronchitis hospitalizations after low wind events (0.68, 95% CI: 0.46-1.00). We found general trends with regard to dust and low wind events being associated with increased odds of hospitalization for asthma and bronchitis amongst all ages and adults (aged 18-64). Adults covered by Medicaid and adults without health insurance had higher risks of hospitalization for asthma and acute bronchitis after both low wind and dust events. CONCLUSIONS: Results suggest that there were respiratory health effects associated with dust and low wind events in El Paso, with stronger impacts among children and poor adults. Girls and boys with acute bronchitis were differentially sensitive to dust and low wind events.


Assuntos
Asma/terapia , Bronquite/terapia , Poeira , Hospitalização , Cobertura do Seguro , Admissão do Paciente , Vento , Doença Aguda , Adolescente , Fatores Etários , Asma/etiologia , Bronquite/etiologia , Criança , Pré-Escolar , Estudos Cross-Over , Feminino , Humanos , Lactente , Masculino , Texas
14.
Talanta ; 77(1): 372-9, 2008 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-18804648

RESUMO

A gas phase chemiluminescence (GPCL)-based method for trace measurement of arsenic has been recently described for the measurement of arsenic in water. The principle is based on the reduction of inorganic As to AsH(3) at a controlled pH (the choice of pH governs whether only As(III) or all inorganic As is converted) and the reaction of AsH(3) with O(3) to produce chemiluminescence (Idowu et al., Anal. Chem. 78 (2006) 7088-7097). The same general principle has also been used in postcolumn reaction detection of As, where As species are separated chromatographically, then converted into inorganic As by passing through a UV photochemical reactor followed by AsH(3) generation and CL reaction with ozone (Idowu and Dasgupta, Anal. Chem. 79 (2007) 9197-9204). In the present paper we describe the measurement of As in different soil and dust samples by serial extraction with water, citric acid, sulfuric acid and nitric acid. We also compare parallel measurements for total As by induction coupled plasma mass spectrometry (ICP-MS). As(V) was the only species found in our samples. Because of chloride interference of isobaric ArCl(+) ICP-MS analyses could only be carried out by standard addition; these results were highly correlated with direct GPCL and LC-GPCL results (r(2)=0.9935 and 1.0000, respectively). The limit of detection (LOD) in the extracts was 0.36 microg/L by direct GPCL compared to 0.1 microg/L by ICP-MS. In sulfuric acid-based extracts, the LC-GPCL method provided LODs inferior to those previously observed for water-based standards and were 2.6, 1.3, 6.7, and 6.4 microg/L for As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA), respectively.


Assuntos
Arsênio/análise , Poeira/análise , Gases/química , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Solo/análise , Espectrometria de Massas
15.
Environ Pollut ; 153(2): 362-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17964035

RESUMO

The metal concentrations in a copper mine tailings and desert broom (Baccharis sarothroides Gray) plants were investigated. The metal concentrations in plants, soil cover, and tailings were determined using ICP-OES. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in tailings was 526.4, 207.4, 89.1, 84.5, 51.7, 49.6, 39.7, and 35.6mgkg(-1), respectively. The concentration of all elements in soil cover was 10-15% higher than that of the tailings, except for molybdenum. The concentration of copper, lead, molybdenum, chromium, zinc, arsenic, nickel, and cobalt in roots was 818.3, 151.9, 73.9, 57.1, 40.1, 44.6, 96.8, and 26.7mgkg(-1) and 1214.1, 107.3, 105.8, 105.5, 55.2, 36.9, 30.9, and 10.9mgkg(-1) for shoots, respectively. Considering the translocation factor, enrichment coefficient, and the accumulation factor, desert broom could be a potential hyperaccumulator of Cu, Pb, Cr, Zn, As, and Ni.


Assuntos
Baccharis/metabolismo , Cobre , Resíduos Industriais , Metais Pesados/farmacocinética , Mineração , Poluentes do Solo/farmacocinética , Arizona , Arsênio/farmacocinética , Biodegradação Ambiental , Cromo/farmacocinética , Cobalto/farmacocinética , Cobre/farmacocinética , Monitoramento Ambiental/métodos , Chumbo/farmacocinética , Molibdênio/farmacocinética , Níquel/farmacocinética , Solo/análise , Espectrofotometria Atômica , Zinco/farmacocinética
16.
J Hazard Mater ; 132(1): 1-13, 2006 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-16427191

RESUMO

Dusts generated in the laboratory from soils and sediments are used to evaluate the emission intensities, composition, and environmental and health impacts of mineral aerosols. Laboratory dust generation is also utilized in other disciplines including process control and occupational hygiene in manufacturing, inhalation toxicology, environmental health and epidemiology, and pharmaceutics. Many widely available and/or easily obtainable laboratory or commercial appliances can be used to generate mineral aerosols, and several distinct classes of dust generators (fluidization devices, dustfall chambers, rotating drums/tubes) are used for geological particulate studies. Dozens of different devices designed to create dust from soils and sediments under controlled laboratory conditions are documented and described in this paper. When choosing a specific instrument, investigators must consider some important caveats: different classes of dust generators characterize different properties (complete collection of a small puff of aerosol versus sampling of a representative portion of a large aerosol cloud) and physical processes (resuspension of deposited dust versus in situ production of dust). The quantity "dustiness" has been used in industrial and environmental health research; though it has been quantified in different ways by different investigators, it should also be applicable to studies of geological aerosol production. Using standardized dust-production devices and definitions of dustiness will improve comparisons between laboratories and instruments: lessons learned from other disciplines can be used to improve laboratory research on the generation of atmospheric dusts from geological sources.


Assuntos
Técnicas de Laboratório Clínico/instrumentação , Poeira , Saúde Ambiental/instrumentação , Sedimentos Geológicos , Aerossóis , Técnicas de Laboratório Clínico/normas , Saúde Ambiental/métodos , Saúde Ambiental/normas , Desenho de Equipamento , Gravitação , Guias como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...