Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
2.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37560121

RESUMO

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

3.
Am J Hum Genet ; 110(8): 1414-1435, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541189

RESUMO

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética
4.
Ann Clin Transl Neurol ; 10(6): 1046-1053, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37194416

RESUMO

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.


Assuntos
Epilepsia , Síndromes Epilépticas , Microcefalia , Humanos , Criança , Epilepsia/genética , Heterozigoto , Serina/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo
5.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798371

RESUMO

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

6.
Proc Natl Acad Sci U S A ; 119(46): e2203491119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36350923

RESUMO

Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance (P < 3.64e-7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on single-cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This large-scale integrative analysis identifies candidates and functional subsets of NDD genes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Masculino , Feminino , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Exoma , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteínas de Transporte/genética
7.
Biomedicines ; 10(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36359385

RESUMO

Rare diseases impact up to 400 million individuals globally. Of the thousands of known rare diseases, many are rare neurodevelopmental disorders (RNDDs) impacting children. RNDDs have proven to be difficult to assess epidemiologically for several reasons. The rarity of them makes it difficult to observe them in the population, there is clinical overlap among many disorders, making it difficult to assess the prevalence without genetic testing, and data have yet to be available to have accurate counts of cases. Here, we utilized large sequencing cohorts of individuals with rare, de novo monogenic disorders to estimate the prevalence of variation in over 11,000 genes among cohorts with developmental delay, autism spectrum disorder, and/or epilepsy. We found that the prevalence of many RNDDs is positively correlated to the previously estimated incidence. We identified the most often mutated genes among neurodevelopmental disorders broadly, as well as developmental delay and autism spectrum disorder independently. Finally, we assessed if social media group member numbers may be a valuable way to estimate prevalence. These data are critical for individuals and families impacted by these RNDDs, clinicians and geneticists in their understanding of how common diseases are, and for researchers to potentially prioritize research into particular genes or gene sets.

8.
Hum Mutat ; 43(4): 461-470, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094443

RESUMO

PAX5 is a transcription factor associated with abnormal posterior midbrain and cerebellum development in mice. PAX5 is highly loss-of-function intolerant and missense constrained, and has been identified as a candidate gene for autism spectrum disorder (ASD). We describe 16 individuals from 12 families who carry deletions involving PAX5 and surrounding genes, de novo frameshift variants that are likely to trigger nonsense-mediated mRNA decay, a rare stop-gain variant, or missense variants that affect conserved amino acid residues. Four of these individuals were published previously but without detailed clinical descriptions. All these individuals have been diagnosed with one or more neurodevelopmental phenotypes including delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. Seizures were documented in four individuals. No recurrent patterns of brain magnetic resonance imaging (MRI) findings, structural birth defects, or dysmorphic features were observed. Our findings suggest that PAX5 haploinsufficiency causes a neurodevelopmental disorder whose cardinal features include DD, variable ID, and/or ASD.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fator de Transcrição PAX5 , Fenótipo
9.
Genome Med ; 13(1): 63, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874999

RESUMO

BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.


Assuntos
Predisposição Genética para Doença , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Padrões de Herança/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Processamento Pós-Transcricional do RNA/genética , Análise de Célula Única
10.
Nat Commun ; 11(1): 4932, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004838

RESUMO

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Assuntos
Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC/genética , Estudos de Casos e Controles , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Feminino , Estudos de Associação Genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Canal de Potássio KCNQ3/genética , Masculino , Mutação , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
12.
Sci Adv ; 5(9): eaax2166, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Variação Genética , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/genética , Adolescente , Animais , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Linhagem , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Adulto Jovem
13.
Nat Commun ; 10(1): 4679, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616000

RESUMO

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2-whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present with autism, intellectual disability, and delayed language and motor development. In addition to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. Although this observation requires replication to establish statistical significance, it also suggests that mutations in this gene are associated with a variety of neuropsychiatric disorders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, but shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.


Assuntos
Transtornos Mentais/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/psicologia , Comportamento Animal , Encéfalo/metabolismo , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/psicologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/psicologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transtornos Mentais/psicologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/psicologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Sequenciamento do Exoma , Adulto Jovem
14.
J Affect Disord ; 239: 247-252, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029151

RESUMO

OBJECTIVE: Neuronal nicotinic acetylcholine receptors (nAChRs), specifically the α7 nAChR encoded by the gene CHRNA7, have been implicated in behavior regulation in animal models. In humans, copy number variants (CNVs) of CHRNA7 are found in a range of neuropsychiatric disorders, including mood and anxiety disorders. Here, we aimed to determine the prevalence of CHRNA7 CNVs among adolescents and young adults with major depressive disorder (MDD) and anxiety disorders. METHODS: Twelve to 21 year-old participants with MDD and/or anxiety disorders (34% males, mean ±â€¯std age: 18.9 ±â€¯1.8 years) were assessed for CHRNA7 copy number state using droplet digital PCR (ddPCR) and genomic quantitative PCR (qPCR). Demographic, anthropometric, and clinical data, including the Beck Anxiety Index (BAI), Beck Depression Inventory (BDI), and the Inventory of Depressive Symptoms (IDS) were collected and compared across individuals with and without a CHRNA7 CNV. RESULTS: Of 205 individuals, five (2.4%) were found to carry a CHRNA7 gain, significantly higher than the general population. No CHRNA7 deletions were identified. Clinically, the individuals carrying CHRNA7 duplications did not differ significantly from copy neutral individuals with MDD and/or anxiety disorders. CONCLUSIONS: CHRNA7 gains are relatively prevalent among young individuals with MDD and anxiety disorders (odds ratio = 4.032) without apparent distinguishing clinical features. Future studies should examine the therapeutic potential of α7 nAChR targeting drugs to ameliorate depressive and anxiety disorders.


Assuntos
Transtornos de Ansiedade/genética , Transtorno Depressivo Maior/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
15.
J Hum Genet ; 63(7): 795-801, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29691480

RESUMO

Multiple genomic disorders result from recurrent deletions or duplications between low copy repeat (LCR) clusters, mediated by nonallelic homologous recombination. These copy number variants (CNVs) often exhibit variable expressivity and/or incomplete penetrance. However, the population prevalence of many genomic disorders has not been estimated accurately. A subset of genomic disorders similarly characterized by CNVs between LCRs have been studied epidemiologically, including Williams-Beuren syndrome (7q11.23), Smith-Magenis syndrome (17p11.2), velocardiofacial syndrome (22q11.21), Prader-Willi/Angelman syndromes (15q11.2q12), 17q12 deletion syndrome, and Charcot-Marie-Tooth neuropathy type 1/hereditary neuropathy with liability to pressure palsy (PMP22, 17q11.2). We have generated a method to estimate prevalence of highly penetrant genomic disorders by (1) leveraging epidemiological data for genomic disorders with previously reported prevalence estimates, (2) obtaining chromosomal microarray data on genomic disorders from a large medical genetics clinic; and (3) utilizing these in a linear regression model to determine the prevalence of this syndromic copy number change among the general population. Using our algorithm, the prevalence for five clinically relevant recurrent genomic disorders: 1q21.1 microdeletion (1/6882 live births) and microduplication syndromes (1/6309), 15q13.3 microdeletion syndrome (1/5525), and 16p11.2 microdeletion (1/3021) and microduplication syndromes (1/4216), were determined. These findings will inform epidemiological strategies for evaluating those conditions, and our method may be useful to evaluate the prevalence of other highly penetrant genomic disorders.


Assuntos
Doença de Charcot-Marie-Tooth/epidemiologia , Síndrome de DiGeorge/epidemiologia , Genoma Humano , Modelos Genéticos , Síndrome de Prader-Willi/epidemiologia , Síndrome de Smith-Magenis/epidemiologia , Síndrome de Williams/epidemiologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Deleção Cromossômica , Duplicação Cromossômica , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Humanos , Análise em Microsséries , Epidemiologia Molecular , Penetrância , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Prevalência , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patologia , Síndrome de Williams/genética , Síndrome de Williams/patologia
16.
Am J Hum Genet ; 101(6): 874-887, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29129316

RESUMO

Copy-number variants (CNVs) of chromosome 15q13.3 manifest clinically as neuropsychiatric disorders with variable expressivity. CHRNA7, encoding for the α7 nicotinic acetylcholine receptor (nAChR), has been suggested as a candidate gene for the phenotypes observed. Here, we used induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) derived from individuals with heterozygous 15q13.3 deletions and heterozygous 15q13.3 duplications to investigate the CHRNA7-dependent molecular consequences of the respective CNVs. Unexpectedly, both deletions and duplications lead to decreased α7 nAChR-associated calcium flux. For deletions, this decrease in α7 nAChR-dependent calcium flux is expected due to haploinsufficiency of CHRNA7. For duplications, we found that increased expression of CHRNA7 mRNA is associated with higher expression of nAChR-specific and resident ER chaperones, indicating increased ER stress. This is likely a consequence of inefficient chaperoning and accumulation of α7 subunits in the ER, as opposed to being incorporated into functional α7 nAChRs at the cell membrane. Here, we showed that α7 nAChR-dependent calcium signal cascades are downregulated in both 15q13.3 deletion and duplication NPCs. While it may seem surprising that genomic changes in opposite direction have consequences on downstream pathways that are in similar direction, it aligns with clinical data, which suggest that both individuals with deletions and duplications of 15q13.3 manifest neuropsychiatric disease and cognitive deficits.


Assuntos
Sinalização do Cálcio/genética , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Estresse do Retículo Endoplasmático/genética , Dosagem de Genes/genética , Células-Tronco Pluripotentes Induzidas/citologia , Deficiência Intelectual/genética , Células-Tronco Neurais/citologia , Convulsões/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Receptor Nicotínico de Acetilcolina alfa7/biossíntese
17.
J Child Adolesc Psychopharmacol ; 27(10): 908-915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28817303

RESUMO

OBJECTIVE: Aggression is among the most common indications for referral to child and adolescent mental health services and is often challenging to treat. Understanding the biological underpinnings of aggression could help optimize treatment efficacy. Neuronal nicotinic acetylcholine receptors (nAChRs), specifically the α7 nAChR, encoded by the gene CHRNA7, have been implicated in aggressive behaviors in animal models as well as humans. Copy number variants (CNVs) of CHRNA7 are found in individuals with neuropsychiatric disorders, often with comorbid aggression. In this study, we aimed to determine the prevalence of CHRNA7 CNVs among individuals treated with risperidone, predominantly for irritability and aggression. METHODS: Risperidone-treated children and adolescents were assessed for CHRNA7 copy number state using droplet digital PCR and genomic quantitative PCR. Demographic, anthropometric, and clinical data, including the Child Behavior Checklist (CBCL), were collected and compared across individuals with and without the CHRNA7 deletion. RESULTS: Of 218 individuals (90% males, mean age: 12.3 ± 2.3 years), 7 (3.2%) were found to carry a CHRNA7 deletion and one proband carried a CHRNA7 duplication (0.46%). T-scores for rule breaking, aggression, and externalizing behavior factors of the CBCL were higher in the deletion group, despite taking 58% higher dose of risperidone. CONCLUSIONS: CHRNA7 loss may contribute to a phenotype of severe aggression. Given the high prevalence of the deletion among risperidone-treated youth, future studies should examine the therapeutic potential of α7 nAChR-targeting drugs to target aggression associated with CHRNA7 deletions.


Assuntos
Antipsicóticos/uso terapêutico , Deleção de Genes , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/genética , Risperidona/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Prospectivos , Resultado do Tratamento
18.
Am J Med Genet A ; 173(9): 2485-2488, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631888

RESUMO

Cohen Syndrome (CS) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in VPS13B, also known as COH1. Over 100 pathogenic variants in VSP13B, primarily truncations, and copy number variants, have been found in patients with CS. Here, we present an 11-month-old girl with CS caused by two multi-exonic small deletions in VSP13B in trans. Array comparative genomic hybridization has revolutionized the field of genome copy number analysis down to the exonic level, however it has its limitations. It cannot detect balanced structural variation nor determine the phase of copy number variants. Heterozygous multi-exonic copy number variation in autosomal recessive genes should be interpreted in the context of a clinical phenotype, and, if warranted, phase analysis should be performed before sequence analysis for that gene is pursued. This patient emphasizes the need of obtaining clinical information and determining the phase in multi-exonic copy number variants for accurate diagnosis and risk counseling.


Assuntos
Variações do Número de Cópias de DNA/genética , Dedos/anormalidades , Deficiência Intelectual/genética , Microcefalia/genética , Hipotonia Muscular/genética , Miopia/genética , Obesidade/genética , Proteínas de Transporte Vesicular/genética , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Éxons/genética , Feminino , Dedos/fisiopatologia , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/fisiopatologia , Microcefalia/fisiopatologia , Hipotonia Muscular/fisiopatologia , Miopia/fisiopatologia , Obesidade/fisiopatologia , Degeneração Retiniana , Deleção de Sequência
19.
Elife ; 42015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26312503

RESUMO

The brain is sensitive to the dose of MeCP2 such that small fluctuations in protein quantity lead to neuropsychiatric disease. Despite the importance of MeCP2 levels to brain function, little is known about its regulation. In this study, we report eleven individuals with neuropsychiatric disease and copy-number variations spanning NUDT21, which encodes a subunit of pre-mRNA cleavage factor Im. Investigations of MECP2 mRNA and protein abundance in patient-derived lymphoblastoid cells from one NUDT21 deletion and three duplication cases show that NUDT21 regulates MeCP2 protein quantity. Elevated NUDT21 increases usage of the distal polyadenylation site in the MECP2 3' UTR, resulting in an enrichment of inefficiently translated long mRNA isoforms. Furthermore, normalization of NUDT21 via siRNA-mediated knockdown in duplication patient lymphoblasts restores MeCP2 to normal levels. Ultimately, we identify NUDT21 as a novel candidate for intellectual disability and neuropsychiatric disease, and elucidate a mechanism of pathogenesis by MeCP2 dysregulation via altered alternative polyadenylation.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Dosagem de Genes , Transtornos Mentais/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/análise , RNA Mensageiro/análise , Deleção de Genes , Duplicação Gênica , Humanos , Linfócitos/química , Proteína 2 de Ligação a Metil-CpG/genética , Poliadenilação
20.
Biochem Pharmacol ; 97(4): 352-362, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26095975

RESUMO

Copy number variants (CNVs) have been implicated in multiple neuropsychiatric conditions, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID). Chromosome 15q13 is a hotspot for such CNVs due to the presence of low copy repeat (LCR) elements, which facilitate non-allelic homologous recombination (NAHR). Several of these CNVs have been overrepresented in individuals with neuropsychiatric disorders; yet variable expressivity and incomplete penetrance are commonly seen. Dosage sensitivity of the CHRNA7 gene, which encodes for the α7 nicotinic acetylcholine receptor in the human brain, has been proposed to have a major contribution to the observed cognitive and behavioral phenotypes, as it represents the smallest region of overlap to all the 15q13.3 deletions and duplications. Individuals with zero to four copies of CHRNA7 have been reported in the literature, and represent a range of clinical severity, with deletions causing generally more severe and more highly penetrant phenotypes. Potential mechanisms to account for the variable expressivity within each group of 15q13.3 CNVs will be discussed.


Assuntos
Dosagem de Genes , Deficiência Intelectual/genética , Transtornos Mentais/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Deleção de Genes , Predisposição Genética para Doença , Humanos , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...