Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339581

RESUMO

Soil health plays a crucial role in crop production, both in terms of quality and quantity, highlighting the importance of effective methods for preserving soil quality to ensure global food security. Soil quality indices (SQIs) have been widely utilized as comprehensive measures of soil function by integrating multiple physical, chemical, and biological soil properties. Traditional SQI analysis involves laborious and costly laboratory analyses, which limits its practicality. To overcome this limitation, our study explores the use of visible near-infrared (vis-NIR) spectroscopy as a rapid and non-destructive alternative for predicting soil properties and SQIs. This study specifically focused on seven soil indicators that contribute to soil fertility, including pH, organic matter (OM), potassium (K), calcium (Ca), magnesium (Mg), available phosphorous (P), and total nitrogen (TN). These properties play key roles in nutrient availability, pH regulation, and soil structure, influencing soil fertility and overall soil health. By utilizing vis-NIR spectroscopy, we were able to accurately predict the soil indicators with good accuracy using the Cubist model (R2 = 0.35-0.93), offering a cost-effective and environmentally friendly alternative to traditional laboratory analyses. Using the seven soil indicators, we looked at three different approaches for calculating and predicting the SQI, including: (1) measured SQI (SQI_m), which is derived from laboratory-measured soil properties; (2) predicted SQI (SQI_p), which is calculated using predicted soil properties from spectral data; and (3) direct prediction of SQI (SQI_dp), The findings demonstrated that SQI_dp exhibited a higher accuracy (R2 = 0.90) in predicting soil quality compared to SQI_p (R2 = 0.23).

2.
Environ Toxicol Chem ; 43(4): 793-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116985

RESUMO

The application of biosolids to agricultural land has been identified as a major pathway of microplastic (MP) pollution to the environment. Very little research, however, has been done on the MP content of biosolids within Canada. Fifteen biosolid samples from different treatment processes (liquid, dewatered, pelletized, and alkali-stabilized) were collected from 11 sources across southern Ontario to quantify and characterize the MP load within them. All samples exhibited MP concentrations ranging from 188 200 (±24 161) to 512 000 (±28 571) MPs/kg dry weight and from 4122 (±231) to 453 746 (±38 194) MPs/kg wet weight. Field amendment of these biosolids can introduce up to 3.73 × 106 to 4.12 × 108 MP/ha of agricultural soil. There was no significant difference in the MP concentrations of liquid, dewatered, and pelletized samples; but a reduction in MP content was observed in alkali-stabilized biosolids. Fragments composed 57.6% of the MPs identified, while 36.7% were fibers. In addition, MPs showed an exponential increase in abundance with decreasing size. Characterization of MPs confirmed that polyester was the most abundant, while polyethylene, polypropylene, polyamide, polyacrylamide, and polyurethane were present across the majority of biosolid samples. The results of the present study provide an estimate of the potential extent of MP contamination to agricultural fields through the amendment of biosolids. Environ Toxicol Chem 2024;43:793-806. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microplásticos , Plásticos , Ontário , Biossólidos , Esgotos/química , Solo , Álcalis
3.
Sci Rep ; 13(1): 12378, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524728

RESUMO

The presence of fused aromatic ring (FAR) structures in soil define the stability of the recalcitrant soil organic matter (RSOM). FAR are important skeletal features in RSOM that contribute to its extended residence time. During the early diagenesis, FAR structures are formed through condensation and polymerization of biomolecules produced during plant residue and microbial product decay. Molecular level characterization of the RSOM extracted from an organic soil profile gives important insights into the formation of FAR. Advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, including recoupled long-range C-H dipolar dephasing experiments on extracted humic acids (HA) showed that they contain diagenetically formed FAR different from charcoal and lignin. Peaks characteristic of FAR are observed at all depths in the soil profile, with a greater prevalence observed in the HA extracts from the clay soil layer at the bottom. In the clay soil layer, 78% of the aromatic carbon was non-protonated, and this was 2.2-fold higher than the topsoil. These data further strengthen our understanding of the humification process that could occur in early diagenesis and help explain the importance of incorporating diagenesis as an important phenomenon for long-term carbon sequestration in soil.

4.
Sensors (Basel) ; 21(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34695958

RESUMO

The absorbance spectra for air-dried and ground soil samples from Ontario, Canada were collected in the visible and near-infrared (VIS-NIR) region from 343 to 2200 nm. The study examined thirteen combination of six preprocessing (1st derivative, 2nd derivative, Savitzky-Golay, Gap, SNV and Detrend) method included in 'prospectr' R package along with four modeling approaches: partial least square regression (PLSR), cubist, random forest (RF), and extreme learning machine (ELM) for prediction of the soil organic matter (SOM). The 1st derivative + gap, 2nd derivative + gap and standard normal variance (SNV) were the best preprocessing algorithms. Thus, only these three preprocessing algorithms along with four modeling approaches were used for prediction of soil pH, electrical conductively (EC), %sand, %silt, %clay, %very coarse sand (VCS), %coarse sand (CS), %medium sand (ms) and %fine sand (fs). The results showed that OM, pH, %sand, %silt and %CS were all predicted with confidence (R2 > 0.60) and the combination of 1st derivative + gap and RF gained the best performance. A detailed comparison of the preprocessing and modeling algorithms for various soil properties in this study demonstrate that for better prediction of soil properties using VIS-NIR spectroscopy requires different preprocessing and modeling algorithms. However, in general RF and 1st derivative + gap can be labeled at the best combination of preprocessing and modelling algorithms.


Assuntos
Poluentes do Solo , Solo , Algoritmos , Análise dos Mínimos Quadrados , Poluentes do Solo/análise , Espectroscopia de Luz Próxima ao Infravermelho
5.
Geochim Cosmochim Acta ; 276: 170-185, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32362680

RESUMO

Vegetation fires are known to have broad geochemical effects on carbon (C) cycles in the Earth system, yet limited information is available for nitrogen (N). In this study, we evaluated how charring organic matter (OM) to pyrogenic OM (PyOM) altered the N molecular structure and affected subsequent C and N mineralization. Nitrogen near-edge X-ray absorption fine structure (NEXAFS) of uncharred OM, PyOM, PyOM toluene extract, and PyOM after toluene extraction were used to predict PyOM-C and -N mineralization potentials. PyOM was produced from three different plants (e.g. Maize-Zea mays L.; Ryegrass-Lollium perenne L.; and Willow-Salix viminalix L.) each with varying initial N contents at three pyrolysis temperatures (350, 500 and 700 °C). Mineralization of C and N was measured from incubations of uncharred OM and PyOM in a sand matrix for 256 days at 30 °C. As pyrolysis temperature increased from 350 to 700 °C, aromatic C[bond, double bond]N in 6-membered rings (putative) increased threefold. Aromatic C[bond, double bond]N in 6-membered oxygenated ring increased sevenfold, and quaternary aromatic N doubled. Initial uncharred OM-N content was positively correlated with the proportion of heterocyclic aromatic N in PyOM (R2 = 0.44; P < 0.0001; n = 42). A 55% increase of aromatic N heterocycles at high OM-N content, when compared to low OM-N content, suggests that higher concentrations of N favor the incorporation of N atoms into aromatic structures by overcoming the energy barrier associated with the electronic and atomic configuration of the C structure. A ten-fold increase of aromatic C[bond, double bond]N in 6-membered rings (putative) in PyOM (as proportion of all PyOM-N) decreased C mineralization by 87%, whereas total N contents and C:N ratios of PyOM had no effects on C mineralization of PyOM-C for both pyrolysis temperatures (for PyOM-350 °C, R2 = 0.15; P < 0.27; for PyOM-700 °C, R2 = 0.22; P < 0.21). Oxidized aromatic N in PyOM toluene extracts correlated with higher C mineralization, whereas aromatic N in 6-membered heterocycles correlated with reduced C mineralization (R2 = 0.56; P = 0.001; n = 100). Similarly, aromatic N in 6-membered heterocycles in PyOM remaining after toluene extraction reduced PyOM-C mineralization (R2 = 0.49; P = 0.0006; n = 100). PyOM-C mineralization increased when N atoms were located at the edge of the C network in the form of oxidized N functionalities or when more N was found in PyOM toluene extracts and was more accessible to microbial oxidation. These results confirm the hypothesis that C persistence of fire-derived OM is significantly affected by its molecular N structure and the presented quantitative structure-activity relationship can be utilized for predictive modeling purposes.

6.
Nat Commun ; 10(1): 664, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737387

RESUMO

Fire-derived organic matter, often referred to as pyrogenic organic matter (PyOM), is present in the Earth's soil, sediment, atmosphere, and water. We investigated interactions of PyOM with ammonia (NH3) gas, which makes up much of the Earth's reactive nitrogen (N) pool. Here we show that PyOM's NH3 retention capacity under ambient conditions can exceed 180 mg N g-1 PyOM-carbon, resulting in a material with a higher N content than any unprocessed plant material and most animal manures. As PyOM is weathered, NH3 retention increases sixfold, with more than half of the N retained through chemisorption rather than physisorption. Near-edge X-ray absorption fine structure and nuclear magnetic resonance spectroscopy reveal that a variety of covalent bonds form between NH3-N and PyOM, more than 10% of which contained heterocyclic structures. We estimate that through these mechanisms soil PyOM stocks could retain more than 600-fold annual NH3 emissions from agriculture, exerting an important control on global N cycling.

7.
J Synchrotron Radiat ; 15(Pt 5): 532-4, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18728328

RESUMO

The standard method of soft X-ray beamline calibration at the N K-edge uses the nu = 0 peak transition of gas-phase N(2). Interstitial N(2) gas trapped or formed within widely available solid-state ammonium- and amine-containing salts can be used for this purpose, bypassing gas-phase measurements. Evidence from non-nitrogen-containing compounds (KH(2)PO(4)) and from He-purged ammonium salts suggest that production of N(2) gas is through beam-induced decomposition. Compounds with nitrate or nitrite as anions produce coincident features and are not suitable for this calibration method.

8.
J Synchrotron Radiat ; 14(Pt 6): 500-11, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17960033

RESUMO

The chemical nature of soil organic nitrogen (N) is still poorly understood and one-third to one-half of it is typically classified as ;unknown N'. Nitrogen K-edge XANES spectroscopy has been used to develop a systematic overview on spectral features of all major N functions in soil and environmental samples. The absolute calibration of the photon energy was completed using the 1s --> pi* transitions of pure gas-phase N(2). On this basis a library of spectral features is provided for mineral N, nitro N, amino acids, peptides, and substituted pyrroles, pyridines, imidazoles, pyrazoles, pyrazines, pyrimidines and purine bases. Although N XANES was previously considered ;non-destructive', effects of radiation damage were shown for two compound classes and an approach was proposed to minimize it. This new evidence is integrated into a proposal for the evaluation spectra from environmental samples with unknown composition. Thus a basis is laid to develop N K-edge XANES as a complementary standard research method to study the molecular composition and ecological functions of ;unknown N' in soil and the environment.


Assuntos
Poluentes Ambientais/análise , Compostos de Nitrogênio/análise , Nitrogênio/análise , Solo/análise , Aminoácidos/análise , Compostos Heterocíclicos de 4 ou mais Anéis/análise , Análise Espectral , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...