Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Curr Protoc ; 4(6): e1030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923763

RESUMO

Functional characterization of enzymes/proteins requires determination of the binding affinity of small molecules or other biomolecules with the target proteins. Several available techniques, such as proteomics and drug discovery strategies, require a precise and high-throughput assay for rapid and reliable screening of potential candidates for further testing. Surface plasmon resonance (SPR), a well-established label-free technique, directly measures biomolecular affinities. SPR assays require immobilization of one interacting component (ligand) on a conductive metal (mostly gold or silver) and a continuous flow of solution containing potential binding partner (analyte) across the surface. The SPR phenomenon occurs when polarized light excites the electrons at the interface of the metal and the dielectric medium to generate electromagnetic waves that propagate parallel to the surface. Changes in the refractive index due to interaction between the ligand and analyte are measured by detecting the reflected light, providing real-time data on kinetics and specificity. A prominent use of SPR is identifying compounds in crude plant extracts that bind to specific molecules. Procedures that utilize SPR are becoming increasingly applicable outside the laboratory setting, and SPR imaging and localized SPR (LSPR) are cheaper and more portable alternative for in situ detection of plant or mammalian pathogens and drug discovery studies. LSPR, in particular, has the advantage of direct attachment to test tissues in live-plant studies. Here, we describe three protocols utilizing SPR-based assays for precise analysis of protein-ligand interactions. © 2024 Wiley Periodicals LLC. Basic Protocol 1: SPR comparison of binding affinities of viral reverse transcriptase polymorphisms Basic Protocol 2: SPR screening of crude plant extract for protein-binding agents Basic Protocol 3: Localized SPR-based antigen detection using antibody-conjugated gold nanoparticles.


Assuntos
Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Ligantes , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Ouro/química
3.
Biology (Basel) ; 13(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666816

RESUMO

DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.

4.
Expert Opin Investig Drugs ; 33(2): 85-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235744

RESUMO

INTRODUCTION: Islatravir (ISL) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) that inhibits HIV RT through multiple mechanisms. Contrary to all approved NtRTIs, islatravir retains a 3'OH group. In vitro and clinical data show that ISL is an ultrapotent investigational drug with high tolerability. AREAS COVERED: The historical development of islatravir and its mechanisms of HIV and HBV inhibition and resistance are covered. Additionally, the outcomes of Phase I and Phase II clinical trials are discussed. EXPERT OPINION: Current first-line antiretroviral therapy, preexposure, and postexposure prophylactic interventions are highly effective in maintaining low or undetectable viral load. Despite these measures, an unusually high rate of new infections every year warrants developing novel antivirals that can suppress drug-resistant HIV and improve compliance. ISL, an NRTTI once deemed a long-acting drug, was placed on a clinical hold. The outcome of ongoing clinical trials with a reduced ISL dose will decide its future clinical application. Additionally, MK-8527, which inhibits HIV via same mechanism as that of ISL may supersede ISL. Data on ISL inhibition of HBV are scarce, and preclinical data show dramatically lower ISL efficacy against HBV than currently preferred nucleos(t)ide drugs, indicating that ISL may not be a potent anti-HBV drug.


Assuntos
Fármacos Anti-HIV , Desoxiadenosinas , Infecções por HIV , Humanos , Fármacos Anti-HIV/farmacologia , Vírus da Hepatite B , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA