Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(12): e0208422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596661

RESUMO

Checkpoint inhibitor immunotherapies have had major success in treating patients with late-stage cancers, yet the minority of patients benefit. Mutation load and PD-L1 staining are leading biomarkers associated with response, but each is an imperfect predictor. A key challenge to predicting response is modeling the interaction between the tumor and immune system. We begin to address this challenge with a multifactorial model for response to anti-PD-L1 therapy. We train a model to predict immune response in patients after treatment based on 36 clinical, tumor, and circulating features collected prior to treatment. We analyze data from 21 bladder cancer patients using the elastic net high-dimensional regression procedure and, as training set error is a biased and overly optimistic measure of prediction error, we use leave-one-out cross-validation to obtain unbiased estimates of accuracy on held-out patients. In held-out patients, the model explains 79% of the variance in T cell clonal expansion. This predicted immune response is multifactorial, as the variance explained is at most 23% if clinical, tumor, or circulating features are excluded. Moreover, if patients are triaged according to predicted expansion, only 38% of non-durable clinical benefit (DCB) patients need be treated to ensure that 100% of DCB patients are treated. In contrast, using mutation load or PD-L1 staining alone, one must treat at least 77% of non-DCB patients to ensure that all DCB patients receive treatment. Thus, integrative models of immune response may improve our ability to anticipate clinical benefit of immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Proliferação de Células , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/fisiologia , Modelos Estatísticos , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/fisiologia , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/imunologia , Biomarcadores Farmacológicos/análise , Biomarcadores Tumorais/análise , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Evolução Clonal/efeitos dos fármacos , Evolução Clonal/genética , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Masculino , Mutação , Medição de Risco , Linfócitos T/efeitos dos fármacos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...