Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(12): 841, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110334

RESUMO

Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.


Assuntos
Doenças Cardiovasculares , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica/métodos , Organogênese , Miócitos Cardíacos , Mamíferos/genética
2.
Cardiovasc Res ; 98(2): 277-85, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23404999

RESUMO

AIMS: Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation-contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. METHODS AND RESULTS: To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. CONCLUSION: These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels.


Assuntos
Autofagia , Chaperonas Moleculares/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Benzoquinonas/farmacologia , Lactamas Macrocíclicas/farmacologia , Lisossomos/metabolismo , Dados de Sequência Molecular , Isquemia Miocárdica/metabolismo , Estresse Oxidativo , Presenilinas/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/química
3.
Cardiovasc Res ; 93(2): 320-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22135164

RESUMO

AIMS: Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection. METHODS AND RESULTS: We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca(2+) uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70(S6K) phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo. CONCLUSION: Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.


Assuntos
Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA