Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Methods Mol Biol ; 2797: 23-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570450

RESUMO

Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.


Assuntos
Isótopos , Proteínas , Proteínas/química , Marcação por Isótopo/métodos , Isótopos de Nitrogênio
3.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395209

RESUMO

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sefarose , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
4.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418613

RESUMO

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transdução de Sinais
5.
PLoS One ; 17(8): e0272364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947606

RESUMO

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Assuntos
Bacteriófagos , COVID-19 , Anticorpos de Domínio Único , Anticorpos Neutralizantes , Anticorpos Antivirais , Bacteriófagos/metabolismo , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806100

RESUMO

Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Bioensaio , Varredura Diferencial de Calorimetria , Fluorometria/métodos , Estabilidade Proteica
7.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213144

RESUMO

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Fenômenos Fisiológicos Celulares , Humanos , Conformação Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química
8.
Biomol NMR Assign ; 16(1): 1-8, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34686998

RESUMO

RAS proteins cycling between the active-form (GTP-bound) and inactive-form (GDP-bound) play a key role in cell signaling pathways that control cell survival, proliferation, and differentiation. Mutations at codon 12, 13, and 61 in RAS are known to attenuate its GTPase activity favoring the RAS active state and constitutively active downstream signaling. This hyperactivation accounts for various malignancies including pancreatic, lung, and colorectal cancers. Active KRAS is found to exist in equilibrium between two rapidly interconverting conformational states (State1-State2) in solution. Due to this dynamic feature of the protein, the 1H-15N correlation cross-peak signals of several amino acid (AA) residues of KRAS belonging to the flexible loop regions are absent from its 2D 1H-15N HSQC spectrum within and near physiological solution pH. A threonine to serine mutation at position 35 (T35S) shifts the interconverting equilibrium to State1 conformation and enables the emergence of such residues in the 2D 1H-15N HSQC spectrum due to gained conformational rigidity. We report here the 1HN, 15N, and 13C backbone resonance assignments for the 19.2 kDa (AA 1-169) protein constructs of KRAS-GppNHp harboring T35S mutation (KRAST35S/C118S-GppNHp) and of its oncogenic counterpart harboring the Q61L mutation (KRAST35S/Q61L/C118S-GppNHp) using heteronuclear, multidimensional NMR spectroscopy at 298 K. High resolution NMR data allowed the unambiguous assignments of 1H-15N correlation cross-peaks for all the residues except for Met1. Furthermore, 2D 1H-15N HSQC overlay of two proteins assisted in determination of Q61L mutation-induced chemical shift perturbations for select residues in the regions of P-loop, Switch-II, and helix α3.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Guanosina Trifosfato/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
9.
bioRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729560

RESUMO

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.

10.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34158410

RESUMO

Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.S. population (n = 27,716) were selected by quota sampling from 462,949 volunteers. Enrolled participants (n = 11,382) provided medical, geographic, demographic, and socioeconomic information and dried blood samples. Survey questions coincident with the Behavioral Risk Factor Surveillance System survey, a large probability-based national survey, were used to adjust for selection bias. Most blood samples (88.7%) were collected between 10 May and 31 July 2020 and were processed using ELISA to measure seropositivity (IgG and IgM antibodies against SARS-CoV-2 spike protein and the spike protein receptor binding domain). The overall weighted undiagnosed seropositivity estimate was 4.6% (95% CI, 2.6 to 6.5%), with race, age, sex, ethnicity, and urban/rural subgroup estimates ranging from 1.1% to 14.2%. The highest seropositivity estimates were in African American participants; younger, female, and Hispanic participants; and residents of urban centers. These data indicate that there were 4.8 undiagnosed SARS-CoV-2 infections for every diagnosed case of COVID-19, and an estimated 16.8 million infections were undiagnosed by mid-July 2020 in the United States.


Assuntos
COVID-19 , Pandemias , Adulto , Anticorpos Antivirais , Feminino , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Estados Unidos/epidemiologia
11.
Methods Mol Biol ; 2262: 105-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977473

RESUMO

Recombinant mammalian proteins are routinely produced in E. coli and thus lack post-translational modifications. KRAS4b is processed at both the N- and C-terminus, resulting in an acetylation of the N-terminus (at Thr, after aminopeptidase removal of the original N-term Met) and farnesylation/carboxymethylation of the C-terminal Cys (after proteolytic cleavage of the original C-terminal three amino acids, Val-Iso-Met). Processing of KRAS enables it to associate with the plasma membrane and fulfill its function in cell signaling. We describe here the production of recombinant KRAS4b from our modified baculovirus/insect cell expression system that accurately incorporates these in vivo modifications to allow experiments that anchor KRAS4b to membrane mimetics (e.g., nanodiscs and liposomes).


Assuntos
Membrana Celular/metabolismo , Prenilação de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Acetilação , Sequência de Aminoácidos , Humanos , Metilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
12.
medRxiv ; 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33532807

RESUMO

Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population (n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 - 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American (14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.

13.
Nat Commun ; 12(1): 113, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397956

RESUMO

The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities. Validation of this protocol is performed using traditionally collected serum as well as dried blood on mail-in blood sampling kits. Archival (pre-2019) samples are used as negative controls, and convalescent, PCR-diagnosed COVID-19 patient samples serve as positive controls. Using this protocol, minimal cross-reactivity is observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses, and no cross reactivity is observed with anti-influenza A H1N1 HAI. Our protocol may thus help provide standardized, population-based data on the extent of SARS-CoV-2 seropositivity, immunity and infection.


Assuntos
Anticorpos Antivirais/sangue , Teste para COVID-19 , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/epidemiologia , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/normas , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pandemias , Padrões de Referência , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Protein Expr Purif ; 179: 105802, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33248226

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection.


Assuntos
COVID-19/sangue , Domínios Proteicos/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Humanos , Ligação Proteica/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/genética
15.
bioRxiv ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33236017

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection. Highlights: Improved yields of SARS-CoV-2 spike RBD through modification of DNA constructs and purification parametersTwo versions of RBD show different sensitivity in serology assaysYields of greater than 50 mg/l obtained under optimal conditionsMagnetic bead purification technology improves throughput of protein production.

16.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32913056

RESUMO

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular
17.
bioRxiv ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511418

RESUMO

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.

18.
medRxiv ; 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32511472

RESUMO

The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is a key tool to understanding the spread of infection, immunity against the virus, and correlates of protection. Limited validation and testing of serology assays used for serosurveys can lead to unreliable or misleading data, and clinical testing using such unvalidated assays can lead to medically costly diagnostic errors and improperly informed public health decisions. Estimating prevalence and clinical decision making is highly dependent on specificity. Here, we present an optimized ELISA-based serology protocol from antigen production to data analysis. This protocol defines thresholds for IgG and IgM for determination of seropositivity with estimated specificity well above 99%. Validation was performed using both traditionally collected serum and dried blood on mail-in blood sampling kits, using archival (pre-2019) negative controls and known PCR-diagnosed positive patient controls. Minimal cross-reactivity was observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses and no cross reactivity was observed with anti-influenza A H1N1 HAI titer during validation. This strategy is highly specific and is designed to provide good estimates of seroprevalence of SARS-CoV-2 seropositivity in a population, providing specific and reliable data from serosurveys and clinical testing which can be used to better evaluate and understand SARS-CoV-2 immunity and correlates of protection.

19.
Protein Expr Purif ; 174: 105686, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504802

RESUMO

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.


Assuntos
Betacoronavirus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Expressão Gênica , Células HEK293 , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Transfecção
20.
Anal Chem ; 92(7): 4971-4979, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32106676

RESUMO

We have developed a rapid and sensitive single-well dual-parametric method introduced in linked RAS nucleotide exchange and RAS/RAF-RBD interaction assays. RAS mutations are frequent drivers of multiple different human cancers, but the development of therapeutic strategies has been challenging. Traditionally, efforts to disrupt the RAS function have focused on nucleotide exchange inhibitors, GTP-RAS interaction inhibitors, and activators increasing GTPase activity of mutant RAS proteins. As the amount of biological knowledge grows, targeted biochemical assays enabling high-throughput screening have become increasingly interesting. We have previously introduced a homogeneous quenching resonance energy transfer (QRET) assay for nucleotide binding studies with RAS and heterotrimeric G proteins. Here, we introduce a novel homogeneous signaling technique called QTR-FRET, which combine QRET technology and time-resolved Förster resonance energy transfer (TR-FRET). The dual-parametric QTR-FRET technique enables the linking of guanine nucleotide exchange factor-induced Eu3+-GTP association to RAS, monitored at 615 nm, and subsequent Eu3+-GTP-loaded RAS interaction with RAF-RBD-Alexa680 monitored at 730 nm. Both reactions were monitored in a single-well assay applicable for inhibitor screening and real-time reaction monitoring. This homogeneous assay enables separable detection of both nucleotide exchange and RAS/RAF interaction inhibitors using low nanomolar protein concentrations. To demonstrate a wider applicability as a screening and real-time reaction monitoring method, the QTR-FRET technique was also applied for G(i)α GTP-loading and pertussis toxin-catalyzed ADP-ribosylation of G(i)α, for which we synthesized a novel γ-GTP-Eu3+ molecule. The study indicates that the QTR-FRET detection technique presented here can be readily applied to dual-parametric assays for various targets.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...