Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(23): 10028-10040, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822757

RESUMO

Our understanding of connections between human and animal health has advanced substantially since the canary was introduced as a sentinel of toxic conditions in coal mines. Nonetheless, the development of wildlife sentinels for monitoring human exposure to toxins has been limited. Here, we capitalized on a three-decade long child blood lead monitoring program to demonstrate that the globally ubiquitous and human commensal house sparrow (Passer domesticus) can be used as a sentinel of human health risks in urban environments impacted by lead mining. We showed that sparrows are a viable proxy for the measurement of blood lead levels in children at a neighborhood scale (0.28 km2). In support of the generalizability of this approach, the blood lead relationship established in our focal mining city enabled us to accurately predict elevated blood lead levels in children from another mining city using only sparrows from the second location. Using lead concentrations and lead isotopic compositions from environmental and biological matrices, we identified shared sources and pathways of lead exposure in sparrows and children, with strong links to contamination from local mining emissions. Our findings showed how human commensal species can be used to identify and predict human health risks over time and space.


Assuntos
Exposição Ambiental , Chumbo , Pardais , Animais , Chumbo/sangue , Humanos , Criança , Mineração , Monitoramento Ambiental , Espécies Sentinelas , Poluentes Ambientais
2.
Environ Res ; 257: 119236, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810819

RESUMO

Lead contaminated soil is a persistent global threat to the health of animal populations. Nevertheless, links between soil lead and its adverse effects on exposed wildlife remain poorly understood. Here, we explore local geographic patterns of exposure in urban birds along a gradient of lead contamination in Broken Hill, an Australian mining city. Soil lead concentrations are linked to co-located blood lead measurements in rock pigeons (Columba livia), house sparrows (Passer domesticus), crested pigeons (Ocyphaps lophotes) and white-plumed honeyeaters (Lichenostomus ornatus). Median blood lead levels were highest in crested pigeons (59.6 µg/dL), followed by house sparrows (35.2 µg/dL), rock pigeons (35.1 µg/dL), and white-plumed honeyeaters (27.4 µg/dL). Blood lead levels in all species declined away from mining areas, the primary source of lead contamination in Broken Hill. Blood lead increased significantly and at the greatest rate relative to soil lead in the three ground foraging species (crested pigeons, house sparrows, rock pigeons). For these species, soil lead concentrations below 200 mg/kg and 900 mg/kg were needed to maintain a median blood lead concentration under the lower threshold of the subtoxic (20-50 µg/dL) and toxic (≥50 µg/dL) effect ranges previously identified for some bird species. We also investigated the effects of lead exposure on blood haemoglobin levels as a general measure of physiological condition in birds exposed to different levels of soil lead contamination. Overall, for every 1 µg/dL increase in blood lead, haemoglobin decreased by 0.11 g/L. The rate of this decrease was not significantly different between species, which supports the measurement of haemoglobin as a consistent though insensitive measure of physiological condition in chronically lead exposed birds. Our findings reflect the importance of lead contaminated soil as a widespread source of elevated blood lead and supressed haemoglobin levels in birds inhabiting urbanised and mining impacted environments.

3.
Environ Pollut ; 335: 122257, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506807

RESUMO

This study investigated trace element contamination in honey bees inhabiting urban areas around the South Pacific's largest and longest operating nickel smelter in Nouméa, New Caledonia. There remains a paucity of research on the environmental impact of nickel smelting, and to date, there has been no assessment of its effects on the popular practice of beekeeping, or whether honey bees are a suitable tracer for nickel smelting emissions. Honey bees and honey were sampled from 15 hives across Nouméa to ascertain linkages between nickel smelter emissions, environmental contamination, and trace element uptake by bees. Comparison of washed and unwashed bees revealed no significant difference in trace element concentrations, indicating trace elements bioaccumulate within the internal tissues of bees over time. Accordingly, trace element concentrations were higher in dead bees than those that were sampled live, with smelter related elements chromium, cobalt and nickel being significantly different at p < 0.05. Except for boron, trace element concentrations were consistently higher in bees than in honey, suggesting that the transfer of trace elements from bees during honey production is negligible. Elevated concentrations of potentially toxic trace elements including cobalt, chromium and nickel in bees declined with distance from smelting operations (Spearman's Rho, p < 0.05), indicating the relationship between environmental contamination and the uptake of trace elements by bees. The findings of this study emphasise potential environmental and human health risks associated with trace element contamination from nickel smelting operations and affirm the use of honey bees as a biomonitor of potentially harmful nickel smelting emissions.


Assuntos
Mel , Oligoelementos , Abelhas , Animais , Humanos , Níquel , Cromo , Cobalto
4.
Environ Res ; 220: 115173, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584841

RESUMO

Despite ongoing concerns about trace metal and metalloid (trace metals) exposure risks from indoor dust, there has been limited research examining their sources and relationship to outdoor soils. Here we determine the concentrations and sources for potentially toxic trace metals arsenic (As), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) and their pathways into homes in Sydney, Australia, using home-matched indoor dust (n = 166), garden soil (n = 166), and road dust samples (n = 51). All trace metals were more elevated indoors versus their matched garden soil counterparts. Indoor Cu and Zn dust concentrations were significantly more enriched than outdoor dusts and soils, indicating indoor sources were more relevant for these elements. By contrast, even though Pb was elevated in indoor dust, garden soil concentrations were correspondingly high, indicating that it remains an important source and pathway for indoor contamination. Elevated concentrations of As, Pb and Zn in garden soil and indoor dust were associated with home age (>50 years), construction materials, recent renovations and deteriorating interior paint. Significant correlations (p < 0.05) between road dust and garden soil Cu concentrations, and those of As and Zn in soil and indoor dust, and Pb across all three media suggest common sources. Scanning electron microscopy (SEM) analysis of indoor dust samples (n = 6) showed that 57% of particles were derived from outdoor sources. Lead isotopic compositions of soil (n = 21) and indoor dust (n = 21) were moderately correlated, confirming the relevance of outdoor contaminants to indoor environments. This study illustrates the source, relationship and fate of trace metals between outdoor and indoor environments. The findings provide insight into understanding and responding to potentially toxic trace metal exposures in the home environment.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Exposição Ambiental/análise , Metais Pesados/análise , Ambiente Domiciliar , Chumbo/análise , Oligoelementos/análise , Poluentes do Solo/análise , Zinco/análise , Poeira/análise , Solo , Monitoramento Ambiental , Medição de Risco
5.
Environ Pollut ; 293: 118462, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742822

RESUMO

Trace metal exposure from environmental sources remains a persistent global problem, particularly in communities residing adjacent to metal extraction and processing industries. This study examines front yard soil and house dust from 62 residences throughout the Australian Ag-Pb-Zn mining city of Broken Hill to better understand spatial variability in metal distributions, compositions and exposures across an industrially polluted urban environment. X-ray fluorescence analysis of paired soil/dust samples indicated that geomean concentrations (mg/kg) of Cu (32/113), Zn (996/1852), As (24/34) and Pb (408/587) were higher in house dust while Ti (4239/3660) and Mn (1895/1101) were higher in outdoor soil. Ore associated metals and metalloids (Mn, Zn, As, Pb) in soil and house dust were positively correlated and declined in concentration away from mining areas, the primary source of metalliferous emissions in Broken Hill. The rate of decline was not equivalent between soil and house dust, with the indoor/outdoor concentration ratio increasing with distance from mining areas for Zn/Pb (geomean = 1.25/1.05 (<1 km); 2.14/1.52 (1-2 km); 2.54/2.04 (>2 km)). House dust and Broken Hill ore Pb isotopic compositions (206Pb/207Pb; 208Pb/207Pb) were more similar in homes nearest to mining areas than those further away (geomean apportioned ore Pb = 88% (<1 km); 76% (1-2 km); 66% (>2 km)), reflecting spatial shifts in the balance of sources contributing to indoor contamination. Incorporation of house dust Pb reduced overestimation of IEUBK modelled blood Pb concentrations compared to when only soil Pb was used. These findings demonstrate that even in contexts where the source and environmental burden of metals are relatively apparent, geochemical relationships and exposures between outdoor and indoor environments are not always predictable, nor easily disaggregated.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Austrália , Poeira/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Mineração , Medição de Risco , Solo , Poluentes do Solo/análise
6.
Data Brief ; 37: 107151, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34124323

RESUMO

Here we detail the soil to vegetable transfer factor (uptake) data and calculation procedures for vegetable trace metal uptake estimation that are presented in Taylor et al. (2021). Firstly, we present the literature review of trace metal uptake data, describing uptake from soil to vegetable produce determined in global experimental studies. After selecting the uptake factors most applicable to the VegeSafe dataset, using similar soil trace metal concentrations and studies that consider only the edible parts of plants, we applied these uptake factors to VegeSafe soils. Using this approach, we were able to estimate trace metal concentrations in home grown produce across the 3,609 homes included in our VegeSafe study. Using Australian and global food standards, we calculated the soil trace metal concentrations that would potentially result in exceedance of Australian and global food safety criteria. Our process followed the method detailed in the Australian soil guidelines (NEPM, 2013). Also presented are the numbers of individual samples and vegetable gardens that are likely to exceed food safety criteria in the three largest cities of Australia: Sydney, Melbourne and Brisbane. Individual household vegetable garden trace metal uptake data were aggregated across standarised geographic areas (Statistical Area Level 3) as established by the Australian Bureau of Statistics to visualise the geospatial distribution of potential trace metal risk from home produce. These modelled data provide the basis for prioritising locations, trace metals and soils for future empirically-based studies of trace metal contamination in home-grown produce.

7.
Environ Int ; 155: 106582, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940394

RESUMO

We launched the VegeSafe program in 2013 to assist Australians concerned about exposure to contaminants in their soils and gardens. VegeSafe analyses garden soils provided by citizens for trace metals at our laboratory at little to no cost, with easy-to-follow guidance on any intervention required. The response was overwhelming-Australians submitted 17,256 soils from 3,609 homes, and in turn VegeSafe researchers now have unparalleled household-scale data, providing new insights into urban trace metal contamination. The results are sobering, with 35% of homes, particularly those that are older, painted and located in inner cities having soils above the Australian residential guideline (300 mg/kg) for the neurotoxic trace metal lead (Pb). Exposure pathway, blood Pb concentration and vegetable uptake modelling showed the communities in these locations were most at risk. VegeSafe is transformative: 94% of participants better understood contaminants, 83% felt safer in their home environment and 40% undertook remedial action based on their results. The two-way nature of this program enables education of citizens about environmental contaminants, advances public health, and delivers impactful science.


Assuntos
Ciência do Cidadão , Metais Pesados , Poluentes do Solo , Austrália , Cidades , Monitoramento Ambiental , Jardins , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise
8.
Environ Pollut ; 262: 114235, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32146362

RESUMO

Communities in low-income and middle-income countries (LMIC) are disproportionally affected by industrial pollution compared to more developed nations. This study evaluates the dispersal and associated health risk of contaminant-laden soil and dust at a copper (Cu) smelter in Tsumeb, Namibia. It is Africa's only smelter capable of treating complex Cu ores that contain high arsenic (As) contents (<1%). The analyses focused on the primary trace elements associated with ore processing at the smelter: As, Cu, and lead (Pb). Portable X-Ray fluorescence spectrometry (pXRF) of trace elements in soils (n = 83) and surface dust wipes (n = 80) showed that elemental contamination was spatially associated with proximity to smelter operations. Soil concentrations were below US EPA soil guidelines. Dust wipe values were elevated relative to sites distal from the facility and similar to those at other international smelter locations (As = 1012 µg/m2 (95% CI 687-1337); Cu = 1838 µg/m2 (95% CI 1191-2485); Pb = 1624 µg/m2 (95% CI 862-2385)). Source apportionment for Pb contamination was assessed using Pb isotopic compositions (PbIC) of dust wipes (n = 22). These data revealed that the PbIC of 73% (n = 16/22) of these wipes corresponded to the PbIC of smelter slag and tailings, indicating contribution from industrial emissions to ongoing exposure risk. Modeling of carcinogenic risk showed that dust ingestion was the most important pathway, followed by inhalation, for both adults and children. Dermal contact to trace elements in dust was also determined to pose a carcinogenic risk for children, but not adults. Consequently, contemporary smelter operations remain an ongoing health risk to the surrounding community, in spite of recent efforts to improve emissions from the operations.


Assuntos
Arsênio/análise , Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Criança , Poeira/análise , Monitoramento Ambiental , Humanos , Chumbo , Namíbia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...