Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 82(3): 226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310515

RESUMO

P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector's response to α particles incident on the sensitive passivated and p + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( 0 ν ß ß ) in 76 Ge. α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of α identification, reliably identifying α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the 0 ν ß ß region of interest window by an order of magnitude in the Majorana Demonstrator  and will be used in the upcoming LEGEND-200 experiment.

2.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883176

RESUMO

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

3.
Phys Rev Lett ; 120(13): 132502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694188

RESUMO

The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).

4.
Phys Rev Lett ; 118(16): 161801, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474933

RESUMO

We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting g_{Ae}<4.5×10^{-13} for pseudoscalars and (α^{'}/α)<9.7×10^{-28} for vectors. We also report a 14.4 keV solar axion coupling limit of g_{AN}^{eff}×g_{Ae}<3.8×10^{-17}, a 1/2ß^{2}<8.5×10^{-48} limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ_{e}>1.2×10^{24} yr for e^{-}→ invisible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...