Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(8): 10793-10804, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179343

RESUMO

Polymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness as the helicoidal structure of the CNCs deflects crack propagation and the polymer matrix dissipates impact energy. However, any adsorbed water layer surrounding the CNCs may compromise the interfacial adhesion between the polymer matrix and the CNCs, thus impacting stress transfer at that interface. Therefore, it is critical to study the role of water at the interface in connecting the polymer dynamics and the resulting mechanical performance of the nanocomposite. Here, we explore the effect of polymer confinement and water content on polymer dynamics in CNC nanocomposites by covalently attaching a fluorogenic water-sensitive dye to poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), to provide insights into the observed mechanical performance. Utilizing fluorescence lifetime imaging microscopy (FLIM), the lifetime of dye fluorescence decay was measured to probe the polymer chain dynamics of PMEO2MA in CNC nanocomposite films. The PMEO2MA chains experienced distinct regions of differing dynamics within Bouligand structures. A correlation was observed between the average fluorescence lifetime and the mechanical performance of CNC films, indicating that polymer chains with high mobility improved the strain and toughness. These studies demonstrated FLIM as a method to investigate polymer dynamics at the nanosecond timescale that can readily be applied to other composite systems.

2.
ACS Appl Mater Interfaces ; 13(46): 55498-55506, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780164

RESUMO

Scratches in polymer coatings and barrier layers negatively impact optical properties (haze, light transmission, etc.), initiate routes of degradation or corrosion (moisture permeability), and nucleate delamination of the coating. Detecting scratches in coatings on advanced materials systems is an important component of structural health monitoring but can be difficult if the defects are too small to be detected by the naked eye. The primary focus of the present work is to investigate scratch damage using fluorescence lifetime imaging microscopy (FLIM) and mechanical activation of a mechanophore (MP)-containing transparent epoxy coating. The approach utilizes a Berkovich tip to scratch MP-epoxy coatings under a linearly increasing normal load. The goal is to utilize the fluorescent behavior of activated MPs to enable the detection of microscale scratches and molecular scale changes in polymeric systems. Taking advantage of the amine functionality present in a polyetheramine/bisphenol A epoxy network, a modified rhodamine dye is covalently bonded into a transparent, thermoset polymer network. Following instrumented scratch application, subsequent fluorescence imaging of the scratched MP-epoxy reveals the extent of fluorescence activation induced by the mechanical deformation. In this work, the rhodamine-based mechanophore is used to identify both ductile and fracture-dominated processes during the scratch application. The fluorescence intensity increases linearly with the applied normal load and is sensitive to fracture dominated processes. Fluorescence lifetime and hyperspectral imaging of damage zones provide additional insight into the local (nanoscopic) environment and molecular structure of the MP around the fracture process zone, respectively. The mechanophore/scratch deformation approach allows a fluorescence microscope to probe local yielding and fracture events in a powerful way that enhances the optical characterization of damage zones formed by standard scratch test methods and leads to novel defect detection strategies.

3.
J Dev Biol ; 9(4)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698187

RESUMO

In this case report, we focus on Muenke syndrome (MS), a disease caused by the p.Pro250Arg variant in fibroblast growth factor receptor 3 (FGFR3) and characterized by uni- or bilateral coronal suture synostosis, macrocephaly without craniosynostosis, dysmorphic craniofacial features, and dental malocclusion. The clinical findings of MS are further complicated by variable expression of phenotypic traits and incomplete penetrance. As such, unraveling the mechanisms behind MS will require a comprehensive and systematic way of phenotyping patients to precisely identify the impact of the mutation variant on craniofacial development. To establish this framework, we quantitatively delineated the craniofacial phenotype of an individual with MS and compared this to his unaffected parents using three-dimensional cephalometric analysis of cone beam computed tomography scans and geometric morphometric analysis, in addition to an extensive clinical evaluation. Secondly, given the utility of human induced pluripotent stem cells (hiPSCs) as a patient-specific investigative tool, we also generated the first hiPSCs derived from a family trio, the proband and his unaffected parents as controls, with detailed characterization of all cell lines. This report provides a starting point for evaluating the mechanistic underpinning of the craniofacial development in MS with the goal of linking specific clinical manifestations to molecular insights gained from hiPSC-based disease modeling.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921179

RESUMO

An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs. The photoluminescence properties of mDTEB-labeled CNFs, characterized using fluorescence spectroscopy, include excellent stability over a wide pH range (pH2 to pH10) and high quantum yield, which provides detection at low (µM) concentrations. FLIM analysis also showed that lignin-like impurities present on the CNF reduce the fluorescence of the mDTEB-labeled CNF, via quenching. Therefore, the chemical composition and the methods of CNF production affect subsequent studies. An in vitro triculture, small intestinal, epithelial model was used to assess the toxicity of ingested mDTEB-labeled CNFs. Zebrafish (Danio rerio) were used to assess in vivo environmental toxicity studies. No cytotoxicity was observed for CNFs, or mDTEB-labeled CNFs, either in the triculture cells or in the zebrafish embryos.

5.
J Phys Chem B ; 124(14): 2914-2919, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32162926

RESUMO

We investigated a chemically modified rhodamine B dye as a sensor of local water content in dye-modified epoxy resins, where these measurements were combined with dielectric measurements to estimate the dye-water association ratio in the material. In particular, the water-sensitive fluorogenic dye was covalently attached to the epoxy resin backbone. This dye becomes fluorescent only upon photoactivation by ultraviolet light and its protonation in the presence of water. High-resolution noncontact microwave cavity dielectric measurements on these materials indicate a decrease of the dielectric permittivity upon photoactivation. We utilize this effect to determine the average extent of hydration of the activated dye molecules. Our results suggest that fluorogenic dyes are promising for the quantification of the local water content in polymer materials, such as the technologically important problem of interfacial water in epoxy materials.

6.
Materials (Basel) ; 12(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212941

RESUMO

This study focuses on understanding the effect of cellulose nanocrystals (CNCs) on glass fiber/epoxy interfacial interactions. The glass fibers (GF) were coated with solutions containing cellulose nanomaterial. The parameters that were investigated were the CNC surface chemistry, concentration, and dispersing medium, i.e., aqueous solution only versus emulsions. To determine the effect of the CNC coatings on the interfacial adhesion, specimens of a single GF in an epoxy matrix were prepared for GF coating by varying the coating formulations. The interfacial shear stress (IFSS) was determined by the single fiber fragmentation test (SFFT). Following the SFFT, the samples were investigated by cross-polarized microscopy in order to understand the fracture modes which are related to the nature of the interphase. According to the SFFT data and photoelastic fracture patterns, both the emulsion and aqueous coatings containing cellulose nanocrystals functionalized with methyl(triphenyl) phosphonium (CNCPh) improve the IFSS in comparison to coated GFs without CNCs.

7.
Angew Chem Int Ed Engl ; 57(10): 2625-2629, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346707

RESUMO

The interaction between metal nanoparticles (NPs) and their substrate plays a critical role in determining the particle morphology, distribution, and properties. The pronounced impact of a thin oxide coating on the dispersion of metal NPs on a carbon substrate is presented. Al2 O3 -supported Pt NPs are compared to the direct synthesis of Pt NPs on bare carbon surfaces. Pt NPs with an average size of about 2 nm and a size distribution ranging between 0.5 nm and 4.0 nm are synthesized on the Al2 O3 coated carbon nanofiber, a significant improvement compared to those directly synthesized on a bare carbon surface. First-principles modeling verifies the stronger adsorption of Pt clusters on Al2 O3 than on carbon, which attributes the formation of ultrafine Pt NPs. This strategy paves the way towards the rational design of NPs with enhanced dispersion and controlled particle size, which are promising in energy storage and electrocatalysis.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31274931

RESUMO

The development of biocompatible polymer nano-composites that enhance mechanical properties while maintaining thermoplastic processability is a longstanding goal in sustainable materials. When the matrix is semi-crystalline, the nanoparticles may induce significant changes to crystallization kinetics and morphology due to their ability to act as nucleating agents. To fully model this behavior in a process line, an understanding of the relationship between crystallinity and modulus is required. Here, we introduce a scalable model system consisting of surface-compatibilized cellulose nanocrystals (CNC) dispersed into poly(ε-caprolactone) (PCL) and study the effects of nanoparticle concentration on isothermal crystallization kinetics. The dispersion is accomplished by exchange of the Na+ of sulfated cellulose nanocrystals by tetra-butyl ammonium cations (Bu4N+) followed by melt mixing via twin-screw extrusion. Crystallization kinetics are measured through the recently developed rheo-Raman instrument which extracts the relationship between the growth of the transient mechanical modulus and that of crystallinity. With extrusion and increasing CNC content, we find the expected enhancement of crystallization rate, but we moreover find a significant change in the relative kinetics of increase in modulus versus crystallinity. We analyze this via generalized effective medium theory which allows computation of a critical percolation threshold ξ c and discuss the results in terms of a change in nucleation density and a change in the anisotropy of crystallization.

9.
Philos Trans A Math Phys Eng Sci ; 376(2112)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29277746

RESUMO

The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into 'chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

10.
Photonics ; 4(3): 39, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057229

RESUMO

We demonstrate a multimodal superresolution microscopy technique based on a phase masked excitation beam in combination with spatially filtered detection. The theoretical foundation for calculating the focus from a non-paraxial beam with an arbitrary azimuthally symmetric phase mask is presented for linear and two-photon excitation processes as well as the theoretical resolution limitations. Experimentally this technique is demonstrated using two-photon luminescence from 80 nm gold particle as well as two-photon fluorescence lifetime imaging of fluorescent polystyrene beads. Finally to illustrate the versatility of this technique we acquire two-photon fluorescence lifetime, two-photon luminescence, and second harmonic images of a mixture of fluorescent molecules and 80 nm gold particles with > 120 nm resolution (λ/7). Since this approach exclusively relies on engineering the excitation and collection volumes, it is suitable for a wide range of scanning-based microscopies.

11.
ACS Appl Mater Interfaces ; 9(16): 14222-14231, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28394559

RESUMO

A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV-vis-NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC "matrix". In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC-water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34194923

RESUMO

Polymer composite materials are found throughout the world both natural and artificial in origin. In the vast majority of applications in these arenas, composites serve as structural support or reinforcement. Demand for lightweight tough composites is growing in multiple application spaces such as aerospace, biomaterials, and infrastructure with physical properties as diverse as the applications. The unifying component in all composites is the presence of the interphase. Many measurement techniques and measurement tools have been developed for the study of this crucial region in composite materials. Many of these methods are great for the measurement and study of bulk properties or model systems. However, development of tools that permit the direct observation of interactions at the interphase during applied stress are needed. Here we employ fluorescence lifetime imaging and hyperspectral imaging to observe activation of a fluorogenic dye at the composite interface as a result of applied stress. The advantages of this system include commercial availability of the dye precursor, and simple one-pot functionalization. The attachment of the dye at the interface is easily monitored through emission wavelength shifts or fluorescence lifetime. Interfacial mechano-responsive dyes have potential for both fundamental studies as well as industrial use as a structural health monitoring tool.

14.
Carbon N Y ; 96: 1208-1216, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765956

RESUMO

To better assess risks associated with nano-enabled products including multiwalled carbon nanotubes (MWCNT) within polymer matrices, it is important to understand how MWCNT are dispersed throughout the composite. The current study presents a method which employs imaging X-ray photoelectron spectroscopy (XPS) to chemically detect spatially segregated MWCNT rich regions at an epoxy composites surface by exploiting differential charging. MWCNT do not charge due to high conductivity and have previously been shown to energetically separate from their insulating surroundings when characterized by XPS. XPS in imaging mode revealed that these conductive regions were spatially separated due to micrometer-scale MWCNT aggregation and poor dispersion during the formation of the composite. Three MWCNT concentrations were studied; (1, 4 and 5) % by mass MWCNT within an epoxy matrix. Images acquired in periodic energy intervals were processed using custom algorithms designed to efficiently extract spectra from regions of interest. As a result, chemical and electrical information on aggregate and non-aggregate portions of the composite was extracted. Raman imaging and scanning electron microscopy were employed as orthogonal techniques for validating this XPS-based methodology. Results demonstrate that XPS imaging of differentially charging MWCNT composite samples is an effective means for assessing dispersion quality.

15.
ACS Appl Mater Interfaces ; 8(40): 27270-27281, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626824

RESUMO

Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na+ with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh3P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

16.
ACS Nano ; 5(4): 3391-9, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21410222

RESUMO

The morphological characterization of polymer nanocomposites over multiple length scales is a fundamental challenge. Here, we report a technique for high-throughput monitoring of interface and dispersion in polymer nanocomposites based on Förster resonance energy transfer (FRET). Nanofibrillated cellulose (NFC), fluorescently labeled with 5-(4,6-dichlorotriazinyl)-aminofluorescein (FL) and dispersed into polyethylene (PE) doped with Coumarin 30 (C30), is used as a model system to assess the ability of FRET to evaluate the effect of processing on NFC dispersion in PE. The level of energy transfer and its standard deviation, measured by fluorescence spectroscopy and laser scanning confocal microscopy (LSCM), are exploited to monitor the extent of interface formation and composite homogeneity, respectively. FRET algorithms are used to generate color-coded images for a real-space observation of energy transfer efficiency. These images reveal interface formation at a nanoscale while probing a macroscale area that is large enough to be representative of the entire sample. The unique ability of this technique to simultaneously provide orientation/spatial information at a macroscale and nanoscale features, encoded in the FRET signal, provides a new powerful tool for structure-property-processing investigation in polymer nanocomposites.

17.
J Chem Phys ; 130(21): 214903, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19508094

RESUMO

We report studies of the orientation state of multiwalled carbon nanotubes (MWNTs) dispersions in steady and transient shear flows. Uncured epoxy was used as a viscous Newtonian suspending medium and samples were prepared from "aligned" MWNTs using methods previously reported [S. S. Rahatekar et al., J. Rheol. 50, 599 (2006)]. Orientation measurements were performed in both the flow-gradient (1-2) and flow-vorticity (1-3) plane of simple shear flow using in situ x-ray scattering techniques. Steady state measurements in the 1-2 plane indicate that the MWNT orientation is shear rate dependent, with the MWNTs orienting closer to the flow direction at higher shear rates. During steady shear, anisotropy was measured to be higher in the 1-2 plane than in the 1-3 plane, demonstrating that the nanotube orientation state is not unaxially symmetric in shear. It is hypothesized that the steady state MWNT orientation is governed primarily by a rate-dependent state of nanotube aggregation/disaggregation, which was separately characterized by optical microscopy of the same samples under shear. High flux synchrotron radiation allowed for time-resolved structural studies in transient flows. A partial relaxation of flow-induced anisotropy was observed following flow cessation, despite the very small rotational diffusivity estimated for these nanotubes. Long transients are observed in step-down experiments, as the orientation state changes in response to the slow tube aggregation process.

18.
Langmuir ; 24(9): 5070-8, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18442227

RESUMO

The use of single wall carbon nanotubes (SWCNTs) in current and future applications depends on the ability to process SWCNTs in a solvent to yield high-quality dispersions characterized by individual SWCNTs and possessing a minimum of SWCNT bundles. Many approaches for the dispersion of SWCNTs have been reported. However, there is no general assessment which compares the relative quality and dispersion efficiency of the respective methods. Herein we report a quantitative comparison of the relative ability of "wrapping polymers" including oligonucleotides, peptides, lignin, chitosan, and cellulose and surfactants such as cholates, ionic liquids, and organosulfates to disperse SWCNTs in water. Optical absorption and fluorescence spectroscopy provide quantitative characterization (amount of SWCNTs that can be suspended by a given surfactant and its ability to debundle SWCNTs) of these suspensions. Sodium deoxy cholate (SDOCO), oligonucleotides (GT)(15), (GT)(10), (AC)(15), (AC)(10), C(10-30), and carboxymethylcellulose (CBMC-250K) exhibited the highest quality suspensions of the various systems studied in this work. The information presented here provides a good framework for further study of SWCNT purification and applications.


Assuntos
DNA de Cadeia Simples/química , Nanotubos de Carbono/química , Tensoativos/química , Absorção , Imidazolinas/química , Espectrofotometria Infravermelho
19.
Langmuir ; 23(19): 9808-15, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17705406

RESUMO

A unique class of nanoclays was prepared by modification of pristine clays or organoclays (Cloisite C20A) with transition metal ions (TMIs). The composition, structure, morphology and thermal properties of TMI-modified nanoclays were investigated by atomic absorption spectroscopy (AAS), elemental analysis (EA), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray absorption near-edge structure (XANES) spectroscopy. The content of TMIs in modified clays was found to be close to the limiting value of ion exchange capacity. SEM and X-ray results confirmed that TMIs were located between the mineral layers instead of being adsorbed on the surface of clay particles. TGA results indicated that the TMI treatment of organoclays could significantly increase the thermal stability, which was more pronounced in air than in nitrogen. Temperature-resolved SAXS measurements revealed that the presence of TMIs increased the onset temperature of structural degradation. The higher thermal stability of TMI-modified organoclays can be attributed to the change in the thermal degradation mechanism, resulting in a decrease in the yield of volatile products and the formation of char facilitated by the presence of catalytically active TMIs.

20.
Langmuir ; 23(14): 7707-14, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17555333

RESUMO

Recent studies on organically modified clays (OMCs) have reported enhanced thermal stabilities when using imidazolium-based surfactants over the typical ammonium-based surfactants. Other studies have shown that polyhedral oligomeric silsesquioxanes (POSS) also improve the thermal properties of composites containing these macromers. In an attempt to utilize the beneficial properties of both imidazolium surfactants and POSS macromers, a dual nanocomposite approach to prepare OMCs was used. In this study, the preparation of a new POSS-imidazolium surfactant and its use as an organic modifier for montmorillonite are reported. The purity, solubility, and thermal characteristics of the POSS-imidazolium chloride were evaluated. In addition, several OMCs were prepared by exchanging the Na+ with POSS imidazolium cations equivalent to 100%, 95%, 40%, 20%, and 5% of the cation exchange capacity of the clay. The subsequent OMCs were characterized using thermal analysis techniques (DSC, SDT, and TGA) as well as 29Si NMR to determine the POSS content in the clay interlayer both before and after thermal oxidation degradation. Results indicate the following: (1) the solvent choice changes the efficiency of the ion-exchange reaction of the clay; (2) self-assembled crystalline POSS domains are present in the clay interlayer; (3) the d-spacing of the exchanged clay is large (3.6 nm), accommodating a bilayer structure of the POSS-imidazolium; and (4) the prepared POSS-imidazolium exchanged clays exhibit higher thermal stabilities than any previously prepared imidazolium or ammonium exchanged montmorillonite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...