Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 477, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859337

RESUMO

The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains cell-generated gradients of soluble molecules. Current cell-based model systems lack this complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber that approximates the TME and demonstrate that breast cancer cells and macrophages generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes along the gradients, leading to new insights into tumorigenesis.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinogênese , Macrófagos/fisiologia , Células Tumorais Cultivadas/fisiologia , Microambiente Tumoral , Animais , Técnicas de Cultura de Células , Camundongos
2.
Redox Biol ; 28: 101354, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683257

RESUMO

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/efeitos adversos , Óxido Nítrico Sintase Tipo II/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Transplante de Neoplasias , Óxido Nítrico/metabolismo , Análise de Célula Única , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Blood Coagul Fibrinolysis ; 28(5): 356-364, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27755019

RESUMO

: Fibrin fibers form the structural backbone of blood clots. The structural properties of fibrin clots are highly dependent on formation kinetics. Environmental factors such as protein concentration, pH, salt, and protein modification, to name a few, can affect fiber kinetics through altered fibrinopeptide release, monomer association, and/or lateral aggregation. The objective of our study was to determine the effect of thrombin and fibrinogen exposed to nitric oxide on fibrin clot properties. ProliNONOate (5 µmol/l) was added to fibrinogen and thrombin before clot initiation and immediately following the addition of thrombin to the fibrinogen solution. Resulting fibrin fibers were probed with an atomic force microscope to determine their diameter and extensibility and fibrin clots were analyzed for clot density using confocal microscopy. Fiber diameters were also determined by confocal microscopy and the rate of clot formation was recorded using UV-vis spectrophotometry. Protein oxidation and S-nitrosation was determined by UV-vis, ELISA, and chemiluminescence. The addition of ProliNONOate to fibrinogen or thrombin resulted in a change in clot structure. ProliNONOate exposure produced clots with lower fiber density, thicker fibers, and increased time to maximum turbidity. The effect of the exposure of nitric oxide to thrombin and fibrinogen were measured independently and indicated that each plays a role in altering clot properties. We detected thrombin S-nitrosation and protein carbonyl formation after nitric oxide exposure. Our study reveals a regulation of fibrin clot properties by nitric oxide exposure and suggests a role of peroxynitrite in oxidative modifications of the proteins. These results relate nitric oxide bioavailability and oxidative stress to altered clot properties.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fibrinogênio/metabolismo , Doadores de Óxido Nítrico/farmacologia , Trombina/metabolismo , Fibrinogênio/ultraestrutura , Humanos , Estresse Nitrosativo/efeitos dos fármacos , Compostos Nitrosos/metabolismo , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA