Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Vis ; 30: 160-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601020

RESUMO

Purpose: Uveal melanoma (UM) is a deadly cancer with limited therapeutic options. At advanced stages, UM cells metastasize almost exclusively into the liver, where targeting metastatic UM cells remain a clinical challenge. Transforming growth factor beta (TGF-ß) exhibits a functional duality in cancer, with one arm limiting tumor growth at an early stage and the second arm promoting metastasis at an advanced stage, notably by inducing an epithelial-to-mesenchymal transition. Thus, we hypothesized that targeting the TGF-ß pathway could be relevant in the treatment of metastatic UM. Methods: In this study, we first characterized the pseudoepithelial/mesenchymal phenotype of UM cell lines Mel270 and 92.1. We then treated the cell lines with TGF-ß to evaluate their responsiveness to the cytokine and to characterize the functional impact of TGF-ß on their cell viability. Results: The results demonstrated, first, that the UM cell lines exhibited a mesenchymal phenotype and responded to TGF-ß treatment in vitro and, second, that TGF-ß promoted a cytostatic effect on the UM cell lines. Conclusions: Our findings indicate that UM cells are sensitive to the two arms of TGF-ß signaling, which suggests that targeting the TGF-ß pathway could be challenging in UM and would require a precise selection of patients in which only the prometastatic arm of TGF-ß is activated.


Assuntos
Melanoma , Transdução de Sinais , Fator de Crescimento Transformador beta , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética
2.
EMBO Rep ; 25(3): 1022-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332153

RESUMO

Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor ß (TGFß), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFß signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFß target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFß induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.


Assuntos
Colangiocarcinoma , RNA Longo não Codificante , Humanos , Via de Sinalização Wnt , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833200

RESUMO

Sexual development is a complex process relying on numerous genes. Disruptions in some of these genes are known to cause differences of sexual development (DSDs). Advances in genome sequencing allowed the discovery of new genes implicated in sexual development, such as PBX1. We present here a fetus with a new PBX1 NM_002585.3: c.320G>A,p.(Arg107Gln) variant, presenting with severe DSD along with renal and lung malformations. Using CRISPR-Cas9 gene editing on HEK293T cells, we generated a KD cell line for PBX1. The KD cell line showed reduced proliferation and adhesion properties compared with HEK293T cells. HEK293T and KD cells were then transfected plasmids coding either PBX1 WT or PBX1-320G>A (mutant). WT or mutant PBX1 overexpression rescued cell proliferation in both cell lines. RNA-seq analyses showed less than 30 differentially expressed genes, in ectopic mutant-PBX1-expressing cells compared with WT-PBX1. Among them, U2AF1, encoding a splicing factor subunit, is an interesting candidate. Overall, mutant PBX1 seems to have modest effects compared with WT PBX1 in our model. However, the recurrence of PBX1 Arg107 substitution in patients with closely related phenotypes calls for its impact in human diseases. Further functional studies are needed to explore its effects on cellular metabolism.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Células HEK293 , Feto , Desenvolvimento Sexual , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética
4.
CRISPR J ; 6(1): 17-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629845

RESUMO

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Assuntos
Gangliosidose GM1 , Humanos , Gangliosidose GM1/terapia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Alelos
5.
Eur J Hum Genet ; 31(4): 453-460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36450801

RESUMO

Premature ovarian insufficiency (POI) affects 1 in 100 women and is a leading cause of female infertility. There are over 80 genes in which variants can cause POI, with these explaining only a minority of cases. Whole exome sequencing (WES) can be a useful tool for POI patient management, allowing clinical care to be personalized to underlying cause. We performed WES to investigate two French sisters, whose only clinical complaint was POI. Surprisingly, they shared one known and one novel likely pathogenic variant in the Perrault syndrome gene, LARS2. Using amino-acylation studies, we established that the novel missense variant significantly impairs LARS2 function. Perrault syndrome is characterized by sensorineural hearing loss in addition to POI. This molecular diagnosis alerted the sisters to the significance of their difficulty in following conversation. Subsequent audiology assessment revealed a mild bilateral hearing loss. We describe the first cases presenting with perceived isolated POI and causative variants in a Perrault syndrome gene. Our study expands the phenotypic spectrum associated with LARS2 variants and highlights the clinical benefit of having a genetic diagnosis, with prediction of potential co-morbidity and prompt and appropriate medical care, in this case by an audiologist for early detection of hearing loss.


Assuntos
Aminoacil-tRNA Sintetases , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Insuficiência Ovariana Primária , Humanos , Feminino , Aminoacil-tRNA Sintetases/genética , Mutação , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética
6.
Life Sci Alliance ; 5(12)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202613

RESUMO

Uveal melanoma (UM), the most common primary intraocular tumor in adults, has been extensively characterized by omics technologies during the last 5 yr. Despite the discovery of gene signatures, the molecular actors driving cancer aggressiveness are not fully understood, and UM is still associated with very poor overall survival (OS) at the metastatic stage. By defining the miR-16 interactome, we revealed that miR-16 mainly interacts via non-canonical base-pairing to a subset of RNAs, promoting their expression levels. Consequently, the canonical miR-16 activity, involved in the RNA decay of oncogenes, such as <i>cyclin D3</i>, is impaired. This non-canonical base-pairing can explain both the derepression of miR-16 targets and the promotion of oncogene expression observed in patients with poor OS in two cohorts. miR-16 activity, assessment using our RNA signature, discriminates the patient's OS as effectively as current methods. To the best of our knowledge, this is the first time that a predictive signature has been composed of genes belonging to the same mechanism (miR-16) in UM. Altogether, our results strongly suggest that UM is a miR-16 disease.


Assuntos
Melanoma , MicroRNAs , Neoplasias Uveais , Adulto , Pareamento de Bases , Ciclina D3 , Humanos , Melanoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
7.
Int J Tryptophan Res ; 15: 11786469221118657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004319

RESUMO

Background: The essential amino acid, tryptophan, is predominantly metabolised through the kynurenine pathway (KP) to generate kynurenine, an aryl-hydrocarbon receptor (AhR) pro-ligand that exerts its effects in a ligand-dependent manner. Interaction between kynurenine and the AhR is an effector mechanism of immunosuppression. We previously found that the KP is involved in multiple sclerosis (MS) disease progression. We postulated that AhR activation by kynurenine might be neuroprotective by encouraging differentiation of Tregs. In this study, we assess both the prophylactic and therapeutic efficiency of kynurenine on disease severity and progression in mice with experimental autoimmune encephalomyelitis (EAE), an MS model. Methods: Myelin oligodendrocyte glycoprotein induced EAE mice (n = 6 per group) were treated with 200 mg/kg L-kynurenine once daily for 10 days beginning on either day 1 of EAE induction (prophylactic) or once they demonstrated motor weakness (therapeutic). Clinical disease severity measured by disease score, time on rotarod, and body weight. Results: The prophylactic kynurenine treatment significantly (P < .0001) prevented the development of a more severe disease course with mice demonstrating diminished relapse rate and improved clinical and behavioural outcomes. However, therapeutic kynurenine did not significantly (P = .4463) decrease the clinical signs until 36 days following induction of disease; after 36 days, it also significantly (P = .0479) reduced disease relapse. Mean body weight measurements only correlated with time on rotarod (r = -.6410; P = .0007) but not clinical scores (r = .1925; P = .3674). Conclusions: Kynurenine ameliorates EAE disease progression prophylactically and reduces relapses therapeutically. Further investigations are needed to elucidate the molecular mechanism explaining the therapeutic role of kynurenine for MS.

8.
Hum Mutat ; 43(10): 1443-1453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35801529

RESUMO

Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle-stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C-terminal truncation variants and N-terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N-terminal activation domain, one in the C-terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue-native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.


Assuntos
Insuficiência Ovariana Primária , Fatores de Transcrição , Proteínas Supressoras de Tumor , Feminino , Humanos , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
9.
Hum Mutat ; 43(9): 1125-1148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451537

RESUMO

PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.


Assuntos
Proteínas de Homeodomínio , Fator de Transcrição 1 de Leucemia de Células Pré-B , Fatores de Transcrição , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Fenótipo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
EMBO Mol Med ; 14(3): e15295, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35156321

RESUMO

Lineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.


Assuntos
Indóis/farmacologia , Melanoma , MicroRNAs , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Mecanotransdução Celular , Melanoma/tratamento farmacológico , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Recidiva Local de Neoplasia
11.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053440

RESUMO

Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.

12.
Mamm Genome ; 33(2): 248-270, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773482

RESUMO

Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.


Assuntos
RNA Longo não Codificante , Animais , Animais Domésticos/genética , Cães , Genoma , Gado/genética , Camundongos , Filogenia , RNA Longo não Codificante/genética , Transcriptoma
13.
Hepatol Commun ; 6(5): 1157-1171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34825776

RESUMO

Transforming growth factor beta (TGF-ß) plays a key role in tumor progression, notably as a potent inducer of epithelial-mesenchymal transition (EMT). However, all of the molecular effectors driving TGFß-induced EMT are not fully characterized. Here, we report that forkhead box S1 (FOXS1) is a SMAD (mothers against decapentaplegic)-dependent TGFß-induced transcription factor, which regulates the expression of genes required for the initial steps of EMT (e.g., snail family transcription repressor 1) and to maintain a mesenchymal phenotype in hepatocellular carcinoma (HCC) cells. In human HCC, we report that FOXS1 is a biomarker of poorly differentiated and aggressive tumor subtypes. Importantly, FOXS1 expression level and activity are associated with a poor prognosis (e.g., reduced patient survival), not only in HCC but also in colon, stomach, and kidney cancers. Conclusion: FOXS1 constitutes a clinically relevant biomarker for tumors in which the pro-metastatic arm of TGF-ß is active (i.e., patients who may benefit from targeted therapies using inhibitors of the TGF-ß pathway).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Prognóstico , Fator de Crescimento Transformador beta/genética
15.
Cancers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34680327

RESUMO

As the second and third leading cancer-related death in men and the world, respectively, primary liver cancer remains a major concern to human health. Despite advances in diagnostic technology, patients with primary liver cancer are often diagnosed at an advanced stage. Treatment options for patients with advanced hepatocarcinoma (HCC) are limited to systemic treatment with multikinase inhibitors and immunotherapy. Furthermore, the 5-year survival rate for these late-stage HCC patients is approximately 12% worldwide. There is an unmet need to identify novel treatment options and/or sensitive blood-based biomarker(s) to detect this cancer at an early stage. Given that the liver harbours the largest proportion of immune cells in the human body, understanding the tumour-immune microenvironment has gained increasing attention as a potential target to treat cancer. The kynurenine pathway (KP) has been proposed to be one of the key mechanisms used by the tumour cells to escape immune surveillance for proliferation and metastasis. In an inflammatory environment such as cancer, the KP is elevated, suppressing local immune cell populations and enhancing tumour growth. In this review, we collectively describe the roles of the KP in cancer and provide information on the latest research into the KP in primary liver cancer.

16.
Hum Gene Ther ; 32(19-20): 1059-1075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494480

RESUMO

Recent advances in genome editing tools, especially novel developments in the clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases (CRISPR/Cas9)-derived editing machinery, have revolutionized not only basic science but, importantly, also the gene therapy field. Their flexibility and ability to introduce precise modifications in the genome to disrupt or correct genes or insert expression cassettes in safe harbors in the genome underline their potential applications as a medicine of the future to cure many genetic diseases. In this review, we give an overview of the recent progress made by French researchers in the field of therapeutic genome editing, while putting their work in the general context of advances made in the field. We focus on recent hematopoietic stem cell gene editing strategies for blood diseases affecting the red blood cells or blood coagulation as well as lysosomal storage diseases. We report on a genome editing-based therapy for muscular dystrophy and the potency of T cell gene editing to increase anticancer activity of chimeric antigen receptor T cells to combat cancer. We will also discuss technical obstacles and side effects such as unwanted editing activity that need to be surmounted on the way toward a clinical implementation of genome editing. We propose here improvements developed today, including by French researchers to overcome the editing-related genotoxicity and improve editing precision by the use of novel recombinant nuclease-based systems such as nickases, base editors, and prime editors. Finally, a solution is proposed to resolve the cellular toxicity induced by the systems employed for gene editing machinery delivery.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Técnicas de Transferência de Genes , Terapia Genética
17.
EMBO Mol Med ; 13(5): e13466, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724679

RESUMO

Most genetic alterations that drive melanoma development and resistance to targeted therapy have been uncovered. In contrast, and despite their increasingly recognized contribution, little is known about the non-genetic mechanisms that drive these processes. Here, we performed in vivo gain-of-function CRISPR screens and identified SMAD3, BIRC3, and SLC9A5 as key actors of BRAFi resistance. We show that their expression levels increase during acquisition of BRAFi resistance and remain high in persister cells and during relapse. The upregulation of the SMAD3 transcriptional activity (SMAD3-signature) promotes a mesenchymal-like phenotype and BRAFi resistance by acting as an upstream transcriptional regulator of potent BRAFi-resistance genes such as EGFR and AXL. This SMAD3-signature predicts resistance to both current melanoma therapies in different cohorts. Critically, chemical inhibition of SMAD3 may constitute amenable target for melanoma since it efficiently abrogates persister cells survival. Interestingly, decrease of SMAD3 activity can also be reached by inhibiting the Aryl hydrocarbon Receptor (AhR), another druggable transcription factor governing SMAD3 expression level. Our work highlights novel drug vulnerabilities that can be exploited to develop long-lasting antimelanoma therapies.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Plasticidade Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/genética , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética
18.
Curr Opin Immunol ; 70: 15-26, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33429228

RESUMO

Sustained transcriptional activation of the aryl hydrocarbon receptor (AhR) promotes tumour growth and impairs the immune defence, at least for cutaneous melanoma and glioma. AhR ligands are produced by the tumour microenvironment (TME) and by the tumour itself (intracrine). The recent identification of interleukin-4-induced-1 (IL4I1), a parallel pathway to indoleamine 2 3-dioxygenase 1 (IDO1)/ tryptophan 2,3-dioxygenase (TDO), and its ability to generate AhR ligands, confirms that a complete inhibition of AhR ligand production might be difficult to reach. Here, we have focused on recent discoveries explaining the large varieties of AhR ligands and the functional consequences in terms of cancer cell plasticity and consecutive therapy resistance. We also examined therapeutic strategies targeting the AhR signalling pathway and their possible adverse effects. Since the end of 2019, two phase I clinical trials have investigated the ability of the AhR antagonist to 'reset' the immune system and re-sensitize the cancer cells to therapies by preventing their dedifferentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Neoplasias/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/imunologia , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
19.
Pigment Cell Melanoma Res ; 34(5): 836-852, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33305505

RESUMO

In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.


Assuntos
Melanócitos/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Oxirredutases/metabolismo , Pigmentação da Pele , Genes Supressores de Tumor , Humanos , Melanoma/genética , Melanoma/patologia , Glicoproteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Oxirredutases/genética
20.
Wiley Interdiscip Rev RNA ; 11(5): e1594, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32233021

RESUMO

Antisense oligonucleotides (ASOs) represent a new and highly promising class of drugs for personalized medicine. In the last decade, major chemical developments and improvements of the backbone structure of ASOs have transformed them into true approved and commercialized drugs. ASOs target both DNA and RNA, including pre-mRNA, mRNA, and ncRDA, based on sequence complementary. They are designed to be specific for each identified molecular and genetic alteration to restore a normal, physiological situation. Thus, the characterization of the underpinning mechanisms and alterations that sustain pathology is critical for accurate ASO-design. ASOs can be used to cure both rare and common diseases, such as orphan genetic alterations and cancer. Through pioneering examples, this review shows the versatility of the mechanisms of action that provide ASOs with the potential capacity to achieve custom treatment, revolutionizing personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.


Assuntos
Terapia Genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Medicina de Precisão , Animais , Desenvolvimento de Medicamentos , Regulação da Expressão Gênica , Inativação Gênica , Terapia Genética/métodos , Humanos , Oligonucleotídeos Antissenso/química , Medicina de Precisão/métodos , Biossíntese de Proteínas , Interferência de RNA , Estabilidade de RNA , Elementos de Resposta , Reparo Gênico Alvo-Dirigido , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...