Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(10): 5039-5049, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36977630

RESUMO

BACKGROUND: The wine sector is constantly evolving, in order to adapt to consumer tastes. The organoleptic characteristics in wines are the main factors to obtain quality wines. Proanthocyanidins (PAs) are responsible in an important way for positive aspects in quality wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations. One strategy to improve grapevines and wines is to obtain new varieties, so our research institute has been selecting some of them from direct crosses between Monastrell and other considered premium varieties such as Cabernet Sauvignon and Syrah. RESULTS: A quantitative analysis in grapes, seeds and wines was carried out during three consecutive seasons (2018, 2019 and 2020) in order to characterize PAs composition and concentration in the following new varieties: MC80 (Monastrell × Cabernet Sauvignon), MC98, MC4, MC18 and MS10 (Monastrell × Syrah). Other aspect to study was the extraction capacity of the different new varieties of PAs during maceration process into must/wine. CONCLUSION: In general, the results showed higher concentrations in PAs in most crosses for the three seasons studied compared to Monastrell variety. It was remarkable that a higher concentration of epigallocatechin was found in most of the wines elaborated with the crosses, being a positive aspect from an organoleptic point of view, since this compound provides softness to the wines. © 2023 Society of Chemical Industry.


Assuntos
Proantocianidinas , Vitis , Vinho , Proantocianidinas/análise , Vinho/análise , Vitis/química , Sementes/química , Sensação
2.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771144

RESUMO

The structural composition of the cell wall of grape skins is related to the cell wall integrity and subsequent extraction of the different compounds that are contained inside vacuoles and also the cell wall breakdown products. Different reports have established that methyl jasmonate (MeJ) produces changes in the composition of the grape skin cell wall. The use of elicitors to promote the production of secondary metabolites in grapes has been studied in several reports; however, its study linked to nanotechnology is less developed. These facts led us to study the effect of methyl jasmonate (MeJ) and nanoparticles doped with MeJ (nano-MeJ) on the cell walls of Monastrell grapes during three seasons. Both treatments tended to increase cell wall material (CWM) and caused changes in different components of the skin cell walls. In 2019 and 2021, proteins were enlarged in both MeJ and nano-MeJ-treated grapes. A general decrease in total phenolic compounds was detected with both treatments, in addition to an increment in uronic acids when the grapes were well ripened. MeJ and nano-MeJ produced a diminution in the amount of cellulose in contrast to an increase in hemicellulose. It should be noted that the effects with nano-MeJ treatment occurred at a dose 10 times lower than with MeJ treatment.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Acetatos/química , Parede Celular/química , Frutas/química
3.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566227

RESUMO

The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Acetatos , Ciclopentanos , Frutas/química , Hexanóis/metabolismo , Odorantes/análise , Oxilipinas/metabolismo , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise
4.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827629

RESUMO

Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Nanopartículas/química , Nitrogênio/análise , Oxilipinas/farmacologia , Vitis/química , Vinho/análise , Aminoácidos/análise , Compostos de Amônio/análise , Análise Discriminante , Estações do Ano
5.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867325

RESUMO

The aromatic profile of a wine is one of the main characteristics appreciated by consumers. Due to climate change, vineyards need to adapt to new conditions, and one of the strategies that might be followed is to develop new white varieties from Monastrell and other cultivars by means of intervarietal crosses, since white varieties are a minority in south-eastern Spain. Such crosses have already been obtained and have been seen to provide quality white wines of high acidity and with a good aromatic composition. To confirm this, a quantitative analysis was carried out during two vintages (2018 and 2019) in order to study and compare the volatile composition of Verdejo (V) wine with the aromatic composition of several wines made from different crosses between Cabernet Sauvignon (C), Syrah (S), Tempranillo (T), and Verdejo (V) with Monastrell (M), by means of headspace SPME-GC-MS analysis. Wine volatile compounds (alcohols, volatile acids, ethyl esters, terpenes, norisoprenoids, and two other compounds belonging to a miscellaneous group) were identified and quantified using a HS-SPME-GS-MS methodology. An additional sensory analysis was carried out by a qualified tasting panel in order to characterize the different wines. The results highlighted how the crosses MT103, MC69, and MC180 showed significant differences from and better quality than the Verdejo wine. These crosses produced higher concentrations of several aromatic families analyzed, which was supported by the views of the tasting panel, thus confirming their excellent aromatic potential as cultivars for producing grapes well adapted to this area for making white wines.


Assuntos
Polifenóis/análise , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise , Álcoois/análise , Ésteres/análise , Norisoprenoides/análise , Odorantes/análise , Espanha , Terpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...