Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273518

RESUMO

As charismatic and iconic species, penguins can act as "ambassadors" or flagship species to promote the conservation of marine habitats in the Southern Hemisphere. Unfortunately, there is a lack of reliable, comprehensive, and systematic analysis aimed at compiling spatially explicit assessments of the multiple impacts that the world's 18 species of penguin are facing. We provide such an assessment by combining the available penguin occurrence information from Global Biodiversity Information Facility (>800,000 occurrences) with three main stressors: climate-driven environmental changes at sea, industrial fisheries, and human disturbances on land. Our analyses provide a quantitative assessment of how these impacts are unevenly distributed spatially within species' distribution ranges. Consequently, contrasting pressures are expected among species, and populations within species. The areas coinciding with the greatest impacts for penguins are the coast of Perú, the Patagonian Shelf, the Benguela upwelling region, and the Australian and New Zealand coasts. When weighting these potential stressors with species-specific vulnerabilities, Humboldt (Spheniscus humboldti), African (Spheniscus demersus), and Chinstrap penguin (Pygoscelis antarcticus) emerge as the species under the most pressure. Our approach explicitly differentiates between climate and human stressors, since the more achievable management of local anthropogenic stressors (e.g., fisheries and land-based threats) may provide a suitable means for facilitating cumulative impacts on penguins, especially where they may remain resilient to global processes such as climate change. Moreover, our study highlights some poorly represented species such as the Northern Rockhopper (Eudyptes moseleyi), Snares (Eudyptes robustus), and Erect-crested penguin (Eudyptes sclateri) that need internationally coordinated efforts for data acquisition and data sharing to understand their spatial distribution properly.


Assuntos
Spheniscidae , Animais , Humanos , Austrália , Ecossistema , Biodiversidade , Pesqueiros
2.
Environ Pollut ; 343: 123159, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104761

RESUMO

Mercury (Hg) is a global pollutant known for its significant bioaccumulation and biomagnification capabilities, posing a particular threat to marine environments. Seabirds have been recognized as effective bioindicators of marine pollution, and, among them, penguins present a unique opportunity to serve as a single taxonomic group (Sphenisciformes) for monitoring Hg across distinct marine ecosystems in the Southern Hemisphere. In this study, we conducted a comprehensive systematic review of Hg concentrations, and performed a meta-analysis that took into account the various sources of uncertainty associated with Hg contamination in penguins. Beyond intrinsic species-specific factors shaping Hg levels, our results showed that the penguin community effectively reflects spatial patterns of Hg bioavailability. We identified geographic Hg hotspots in Australia, the Indian Ocean, and Tierra del Fuego, as well as coldspots in Perú and the South Atlantic. Furthermore, specific penguin species, namely the Southern Rockhopper (Eudyptes chrysocome) and Macaroni penguin (Eudyptes chrysolophus), are highlighted as particularly vulnerable to the toxic effects of Hg. Additionally, we identified knowledge gaps in geographic areas such as the Galápagos Islands, South Africa, and the coast of Chile, as well as in species including Fiordland (Eudyptes pachyrhynchus), Snares (Eudyptes robustus), Erect-crested (Eudyptes sclateri), Royal (Eudyptes schlegeli), Yellow-eyed (Megadyptes antipodes), and Galápagos (Spheniscus mendiculus) penguins. Overall, our study contributes to the growing body of literature emphasizing the role of penguins as bioindicators of Hg pollution, but it also highlights areas where further research and data collection are needed for a more comprehensive understanding of Hg contamination in marine ecosystems in the Southern Hemisphere.


Assuntos
Mercúrio , Spheniscidae , Animais , Mercúrio/análise , Ecossistema , Biomarcadores Ambientais , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...