Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069323

RESUMO

Presenilin 1 (PS1) forms, via its large cytosolic loop, a trimeric complex with N-cadherin and ß-catenin, which is a key component of Wnt signaling. PS1 undergoes phosphorylation at 353 and 357 serines upon enhanced activity and elevated levels of the GSK3ß isoform. PS1 mutations surrounding these serines may alter the stability of the ß-catenin complex. Such mutations are found in some cases of familial early-onset Alzheimer's disease (fEOAD), but their functional impact remains obscure. One of such variants of PS1, the A360T substitution, is located close to GSK3ß-targeted serine residues. This variant was recently demonstrated in the French population, but more detail is needed to understand its biological effects. To assess the significance of this variant, we employed functional studies using a fibroblast cell line from an Alzheimer's disease case (a female proband) carrying the A360T mutation. Based on functional transcriptomic, cellular, and biochemical assays, we demonstrated atypically impaired ß-catenin/GSK3ß signaling in the A360T patient's fibroblasts. In detail, this was characterized by a decreased level of active cytosolic ß-catenin and bound by PS1, an increased level of nuclear ß-catenin, an increased level of inhibited GSK3ß phosphorylated on Ser9, and enhanced interaction of GSK3ß(Ser9) with PS1. Based on the transcriptomic profile of the A360T fibroblasts, we proposed a dysregulated transcriptional activity of ß-catenin, exemplified by increased expression of various cyclin-dependent kinases and cyclins, such as cyclin D1, potentially inducing neurons' cell cycle re-entry followed by apoptosis. The A360T cells did not exhibit significant amyloid pathology. Therefore, cell death in this PS1 cytosolic loop mutation may be attributed to impaired ß-catenin/GSK3ß signaling rather than amyloid deposition per se. We further estimated the biological and clinical relevance of the A360T variant by whole exome sequencing (WES). WES was performed on DNA from the blood of an A360T female proband, as well as an unrelated male patient carrying the A360T mutation and his mutation-free daughter (both unavailable for the derivation of the fibroblast cell lines). WES confirmed the highest-priority AD causality of the A360T variant in PS1 and also profiled the pathways and processes involved in the A360T case, highlighting the greatest importance of altered Wnt signaling.


Assuntos
Doença de Alzheimer , beta Catenina , Feminino , Masculino , Humanos , beta Catenina/genética , Doença de Alzheimer/genética , Glicogênio Sintase Quinase 3 beta/genética , Transativadores/genética , Presenilina-1/genética , Mutação , Expressão Gênica
2.
Sci Adv ; 7(39): eabg7261, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559567

RESUMO

Tiwanaku civilization flourished in the Lake Titicaca basin between 500 and 1000 CE and at its apogee influenced wide areas across the southern Andes. Despite a considerable amount of archaeological data, little is known about the Tiwanaku population. We analyzed 17 low-coverage genomes from individuals dated between 300 and 1500 CE and demonstrated genetic continuity in the Lake Titicaca basin throughout this period, which indicates that the substantial cultural and political changes in the region were not accompanied by large-scale population movements. Conversely, the ritual center of Tiwanaku revealed high diversity, including individuals with primarily local genetic ancestry and those with foreign admixture or provenance from as far as the Amazon. Nonetheless, most human offerings associated with the Akapana platform exhibited pure Titicaca basin ancestry and dated to ca. 950 CE­the onset of Tiwanaku's decline as a sociopolitical center. Our results strengthen the view of Tiwanaku as a complex and far-reaching polity.

3.
Oncol Lett ; 21(3): 222, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33613711

RESUMO

Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.

4.
Nat Protoc ; 16(2): 1034-1061, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349705

RESUMO

DNA double-strand breaks (DSBs) are implicated in various physiological processes, such as class-switch recombination or crossing-over during meiosis, but also present a threat to genome stability. Extensive evidence shows that DSBs are a primary source of chromosome translocations or deletions, making them a major cause of genomic instability, a driving force of many diseases of civilization, such as cancer. Therefore, there is a great need for a precise, sensitive, and universal method for DSB detection, to enable both the study of their mechanisms of formation and repair as well as to explore their therapeutic potential. We provide a detailed protocol for our recently developed ultrasensitive and genome-wide DSB detection method: immobilized direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing (i-BLESS), which relies on the encapsulation of cells in agarose beads and labeling breaks directly and specifically with biotinylated linkers. i-BLESS labels DSBs with single-nucleotide resolution, allows detection of ultrarare breaks, takes 5 d to complete, and can be applied to samples from any organism, as long as a sufficient amount of starting material can be obtained. We also describe how to combine i-BLESS with our qDSB-Seq approach to enable the measurement of absolute DSB frequencies per cell and their precise genomic coordinates at the same time. Such normalization using qDSB-Seq is especially useful for the evaluation of spontaneous DSB levels and the estimation of DNA damage induced rather uniformly in the genome (e.g., by irradiation or radiomimetic chemotherapeutics).


Assuntos
Quebras de DNA de Cadeia Dupla , DNA/química , Marcação in Situ com Primers/métodos , DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Células Eucarióticas , Instabilidade Genômica/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Meiose/genética
5.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33278361

RESUMO

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Nat Commun ; 11(1): 3940, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769985

RESUMO

R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops in the human genome, here, we map RNA:DNA hybrids, replication stress markers and DNA double-strand breaks (DSBs) in cells depleted for Topoisomerase I (Top1), an enzyme that relaxes DNA supercoiling and prevents R-loop formation. RNA:DNA hybrids are found at both promoters (TSS) and terminators (TTS) of highly expressed genes. In contrast, the phosphorylation of RPA by ATR is only detected at TTS, which are preferentially replicated in a head-on orientation relative to the direction of transcription. In Top1-depleted cells, DSBs also accumulate at TTS, leading to persistent checkpoint activation, spreading of γ-H2AX on chromatin and global replication fork slowdown. These data indicate that fork pausing at the TTS of highly expressed genes containing R-loops prevents head-on conflicts between replication and transcription and maintains genome integrity in a Top1-dependent manner.


Assuntos
Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Estruturas R-Loop/genética , Regiões Terminadoras Genéticas/genética , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/genética , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo
7.
Mol Cell ; 78(3): 396-410.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169162

RESUMO

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Assuntos
Replicação do DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Proteínas Serina-Treonina Quinases/genética , Origem de Replicação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Cell ; 77(2): 395-410.e3, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759824

RESUMO

The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Nucleossomos/genética , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Coesinas
9.
BMC Psychiatry ; 19(1): 221, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311510

RESUMO

Following publication of the original article [1], we have been notified that some important information was omitted by the authors from the Competing interests section. The declaration should read as below.

10.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234450

RESUMO

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Assuntos
Dolicóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosiltransferases/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicóis/análise , Fungos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/química , Trichoderma/metabolismo
11.
Nat Commun ; 10(1): 2313, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127121

RESUMO

DNA double-strand breaks (DSBs) are among the most lethal types of DNA damage and frequently cause genome instability. Sequencing-based methods for mapping DSBs have been developed but they allow measurement only of relative frequencies of DSBs between loci, which limits our understanding of the physiological relevance of detected DSBs. Here we propose quantitative DSB sequencing (qDSB-Seq), a method providing both DSB frequencies per cell and their precise genomic coordinates. We induce spike-in DSBs by a site-specific endonuclease and use them to quantify detected DSBs (labeled, e.g., using i-BLESS). Utilizing qDSB-Seq, we determine numbers of DSBs induced by a radiomimetic drug and replication stress, and reveal two orders of magnitude differences in DSB frequencies. We also measure absolute frequencies of Top1-dependent DSBs at natural replication fork barriers. qDSB-Seq is compatible with various DSB labeling methods in different organisms and allows accurate comparisons of absolute DSB frequencies across samples.


Assuntos
Biologia Computacional/métodos , Quebras de DNA de Cadeia Dupla , Sequenciamento Completo do Genoma/métodos , Linhagem Celular Tumoral , Replicação do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Genoma Fúngico/genética , Genoma Humano/genética , Humanos , Saccharomycetales/genética
12.
Sci Rep ; 9(1): 4307, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867521

RESUMO

The last decade brought a still growing experimental evidence of mobilome impact on host's gene expression. We systematically analysed genomic location of transposable elements (TEs) in 625 publicly available fungal genomes from the NCBI database in order to explore their potential roles in genome evolution and correlation with species' lifestyle. We found that non-autonomous TEs and remnant copies are evenly distributed across genomes. In consequence, they also massively overlap with regions annotated as genes, which suggests a great contribution of TE-derived sequences to host's coding genome. Younger and potentially active TEs cluster with one another away from genic regions. This non-randomness is a sign of either selection against insertion of TEs in gene proximity or target site preference among some types of TEs. Proteins encoded by genes with old transposable elements insertions have significantly less repeat and protein-protein interaction motifs but are richer in enzymatic domains. However, genes only proximal to TEs do not display any functional enrichment. Our findings show that adaptive cases of TE insertion remain a marginal phenomenon, and the overwhelming majority of TEs are evolving neutrally. Eventually, animal-related and pathogenic fungi have more TEs inserted into genes than fungi with other lifestyles. This is the first systematic, kingdom-wide study concerning mobile elements and their genomic neighbourhood. The obtained results should inspire further research concerning the roles TEs played in evolution and how they shape the life we know today.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Fúngicos/genética , Enzimas/genética , Evolução Molecular , Fungos/genética , Genoma Fúngico/genética , Estilo de Vida , Domínios e Motivos de Interação entre Proteínas/genética
13.
BMC Evol Biol ; 18(1): 199, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30577795

RESUMO

BACKGROUND: The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS: We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS: The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/classificação , Bases de Conhecimento , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Coenzimas/metabolismo , Funções Verossimilhança , Filogenia , Especificidade por Substrato
14.
Commun Biol ; 1: 181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393778

RESUMO

Maintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.

15.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270107

RESUMO

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Assuntos
Cromatina/genética , Reparo do DNA/genética , Histonas/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos , Células K562 , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
16.
BMC Genet ; 19(1): 85, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231850

RESUMO

BACKGROUND: Approximately 90% of colorectal cancer (CRC) deaths are caused by tumors ability to migrate into the adjacent tissues and metastase into distant organs. More than 40 genes have been causally linked to the development of CRC but no mutations have been associated with metastasis yet. To identify molecular basis of CRC metastasis we performed whole-exome and genome-scale transcriptome sequencing of 7 liver metastases along with their matched primary tumours and normal tissue. Multiple, spatially separated fragments of primary tumours were analyzed in each case. Uniformly malignant tissue specimen were selected with macrodissection, for three samples followed with laser microdissection. RESULTS: > 100 sequencing coverage allowed for detection of genetic alterations in subpopulation of tumour cells. Mutations in KRAS, APC, POLE, and PTPRT, previously associated with CRC development, were detected in most patients. Several new associations were identified, including PLXND1, CELSR3, BAHD1 and PNPLA6. CONCLUSIONS: We confirm the essential role of inflammation in CRC progression but question the mechanism of matrix metalloproteinases activation described in other work. Comprehensive sequencing data made it possible to associate genome-scale mutation distribution with gene expression patterns. To our knowledge, this is the first work to report such link in CRC metastasis context.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Hepáticas/genética , Mutação , Metástase Neoplásica/genética , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Exoma , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/secundário , Análise de Sequência de RNA
17.
Sci Rep ; 8(1): 13866, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217992

RESUMO

While protein concentrations are physiologically most relevant, measuring them globally is challenging. mRNA levels are easier to measure genome-wide and hence are typically used to infer the corresponding protein abundances. The steady-state condition (assumption that protein levels remain constant) has typically been used to calculate protein concentrations, as it is mathematically convenient, even though it is often not satisfied. Here, we propose a method to estimate genome-wide protein abundances without this assumption. Instead, we assume that the system returns to its baseline at the end of the experiment, which is true for cyclic phenomena (e.g. cell cycle) and many time-course experiments. Our approach only requires availability of gene expression and protein half-life data. As proof-of-concept, we predicted proteome dynamics associated with the budding yeast cell cycle, the results are available for browsing online at http://dynprot.cent.uw.edu.pl/ . The approach was validated experimentally by verifying that the predicted protein concentration changes were consistent with measurements for all proteins tested. Additionally, if proteomic data are available as well, we can also infer changes in protein half-lives in response to posttranslational regulation, as we did for Clb2, a post-translationally regulated protein. The predicted changes in Clb2 abundance are consistent with earlier observations.


Assuntos
Perfilação da Expressão Gênica , Proteômica , Cinética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
18.
BMC Genomics ; 19(1): 621, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126366

RESUMO

BACKGROUND: Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci. RESULTS: We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system. CONCLUSION: We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.


Assuntos
Transferência Genética Horizontal/genética , Genoma Bacteriano , Staphylococcus lugdunensis/genética , Sistemas CRISPR-Cas/genética , Humanos , Filogenia , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Virulência , Fatores de Virulência/genética
19.
Oxid Med Cell Longev ; 2018: 6918797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849909

RESUMO

Epigenetic mechanisms play an important role in the development and progression of various neurodegenerative diseases. Abnormal methylation of numerous genes responsible for regulation of transcription, DNA replication, and apoptosis has been linked to Alzheimer's disease (AD) pathology. We have recently performed whole transcriptome profiling of familial early-onset Alzheimer's disease (fEOAD) patient-derived fibroblasts. On this basis, we demonstrated a strong dysregulation of cell cycle checkpoints and DNA damage response (DDR) in both fibroblasts and reprogrammed neurons. Here, we show that the aging-correlated hypermethylation of KLF14 and TRIM59 genes associates with abnormalities in DNA repair and cell cycle control in fEOAD. Based on the resulting transcriptome networks, we found that the hypermethylation of KLF14 might be associated with epigenetic regulation of the chromatin organization and mRNA processing followed by hypermethylation of TRIM59 likely associated with the G2/M cell cycle phase and p53 role in DNA repair with BRCA1 protein as the key player. We propose that the hypermethylation of KLF14 could constitute a superior epigenetic mechanism for TRIM59 hypermethylation. The methylation status of both genes affects genome stability and might contribute to proapoptotic signaling in AD. Since this study combines data obtained from various tissues from AD patients, it reinforces the view that the genetic methylation status in the blood may be a valuable predictor of molecular processes occurring in affected tissues. Further research is necessary to define a detailed role of TRIM59 and KLF4 in neurodegeneration of neurons.


Assuntos
Doença de Alzheimer/patologia , Metilação de DNA , Proteínas de Membrana/metabolismo , Metaloproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição Sp/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Apoptose , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Pontos de Checagem do Ciclo Celular , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Reparo do DNA , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Masculino , Proteínas de Membrana/genética , Metaloproteínas/genética , Pessoa de Meia-Idade , Fatores de Transcrição Sp/genética , Proteínas com Motivo Tripartido , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Genome Biol ; 19(1): 34, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544533

RESUMO

Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, including radiation and chemicals. DSBs can cause the abnormal chromosomal rearrangements associated with cancer. Recent techniques allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of their origins. However, these techniques are costly and challenging. Hence, we devise a computational approach to predict DSBs using the epigenomic and chromatin context, for which public data are readily available from the ENCODE project. We achieve excellent prediction accuracy at high resolution. We identify chromatin accessibility, activity, and long-range contacts as the best predictors.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA/química , Epigênese Genética , Linhagem Celular , Cromatina/metabolismo , Código das Histonas , Humanos , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA