Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38190273

RESUMO

Introduction: Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. Materials and Methods: We used a response-contingent vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Results: Adolescent (35- to 55-day-old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared with adolescent males. In adulthood (70-110 days old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared with vehicle rats, thereby indicating sex differences in behavioral flexibility impairments. Notably, sex-treatment interactions were not observed when rats of each sex were exposed to a noncontingent CANTHC vapor dosing regimen that approximated CANTHC vapor deliveries earned by females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no changes in myelin basic protein expression or dendritic spine density. Conclusion: Altogether, these data reveal important sex differences in rates of responding for CANTHC vapor in adolescence that may confer enduring alterations to mPFC structure and function and suggest that there may be subtle differences in the effects of response-contingent versus noncontingent cannabis exposure that should be systematically examined in future studies.

2.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260326

RESUMO

Early life sleep is important for neuronal development and maturation. Using the highly social prairie vole rodent model, we have previously reported that early-life sleep disruption (ELSD) during the pre-weaning period postnatal day (P)14 to 21 results in adult interference with social bonding and increases ethanol consumption following a stressor. Furthermore, we have reported increased parvalbumin expression and reduced glutamatergic neurotransmission in cortical regions in adult prairie voles that experienced this paradigm. To understand the impact of ELSD on the lifespan, examination of an earlier time in life is necessary. Thus, the aim of the present study was to examine the behavioral outcomes of ELSD on adolescent prairie voles. Here we hypothesized that anxiety and reward related behaviors, as measured by light/dark box, 2-bottle choice and social interactions, would be negatively impacted by ELSD in adolescent male and female prairie voles. Male ELSD voles were no different from control voles in measures of anxiety and ethanol preference or consumption, but affiliative social interactions were significantly reduced. ELSD differentially impacted female prairie voles, with increased anxiety-like behavior and reductions in ethanol consumption compared to Controls, but no impact on ethanol preference or social interactions. Together, these results suggest both male and female prairie voles experience differential changes to reward seeking behaviors, but only female prairie voles showed increases in anxiety-like behavior. These results further suggest that early-life sleep is critically important for neurotypical behaviors in adolescence, a time where reward-seeking and risky behaviors are adaptive for learning and promoting survival.

3.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711651

RESUMO

Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood. To this end, we used a novel volitional vapor administration model to investigate long-term effects of cannabis use during adolescence on the medial prefrontal cortex (mPFC) and mPFC-dependent behaviors in male and female rats. Adolescent (35-55 day old) female rats had significantly higher rates of responding for vaporized Δ9-tetrahydrocannabinol (THC)-dominant cannabis extract (CANTHC) compared to adolescent males. In adulthood (70-110 day old), female, but not male, CANTHC rats also took more trials to reach criterion and made more regressive errors in an automated attentional set-shifting task compared to vehicle rats. Similar set-shifting deficits were observed in males when they were exposed to a non-contingent CANTHC vapor dosing regimen that approximated CANTHC self-administration rates in females. No differences were observed in effort-based decision making in either sex. In the mPFC, female (but not male) CANTHC rats displayed more reactive microglia with no significant changes in myelin basic protein expression or dendritic spine density. Together, these data reveal important sex differences in rates of cannabis vapor self-administration in adolescence that confer enduring alterations to mPFC structure and function. Importantly, female-specific deficits in behavioral flexibility appear to be driven by elevated rates of CANTHC self-administration as opposed to a sex difference in the effects of CANTHC vapor per se.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...