Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1092024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864832

RESUMO

Introduction: Lipids and fatty acids are key components in metabolic processes of the human placenta, thereby contributing to the development of the fetus. Placental dyslipidemia and aberrant activity of lipases have been linked to diverse pregnancy associated complications, such as preeclampsia and preterm birth. The serine hydrolases, diacylglycerol lipase α and ß (DAGLα, DAGLß) catalyze the degradation of diacylglycerols, leading to the formation of monoacylglycerols (MAG), including one main endocannabinoid 2-arachidonoylglycerol (2-AG). The major role of DAGL in the biosynthesis of 2-AG is evident from various studies in mice but has not been investigated in the human placenta. Here, we report the use of the small molecule inhibitor DH376, in combination with the ex vivo placental perfusion system, activity-based protein profiling (ABPP) and lipidomics, to determine the impact of acute DAGL inhibition on placental lipid networks. Methods: DAGLα and DAGLß mRNA expression was detected by RT-qPCR and in situ hybridization in term placentas. Immunohistochemistry staining for CK7, CD163 and VWF was applied to localize DAGLß transcripts to different cell types of the placenta. DAGLß activity was determined by in- gel and MS-based activity-based protein profiling (ABPP) and validated by addition of the enzyme inhibitors LEI-105 and DH376. Enzyme kinetics were measured by EnzChek™ lipase substrate assay. Ex vivo placental perfusion experiments were performed +/- DH376 [1 µM] and changes in tissue lipid and fatty acid profiles were measured by LC-MS. Additionally, free fatty acid levels of the maternal and fetal circulations were determined. Results: We demonstrate that mRNA expression of DAGLß prevails in placental tissue, compared to DAGLα (p ≤ 0.0001) and that DAGLß is mainly located to CK7 positive trophoblasts (p ≤ 0.0001). Although few DAGLα transcripts were identified, no active enzyme was detected applying in-gel or MS-based ABPP, which underlined that DAGLß is the principal DAGL in the placenta. DAGLß dependent substrate hydrolysis in placental membrane lysates was determined by the application of LEI-105 and DH376. Ex vivo pharmacological inhibition of DAGLß by DH376 led to reduced MAG tissue levels (p ≤ 0.01), including 2-AG (p≤0.0001). We further provide an activity landscape of serine hydrolases, showing a broad spectrum of metabolically active enzymes in the human placenta. Discussion: Our results emphasize the role of DAGLß activity in the human placenta by determining the biosynthesis of 2-AG. Thus, this study highlights the special importance of intra-cellular lipases in lipid network regulation. Together, the activity of these specific enzymes may contribute to the lipid signaling at the maternal-fetal interface, with implications for function of the placenta in normal and compromised pregnancies.


Assuntos
Endocanabinoides , Lipase Lipoproteica , Placenta , Feminino , Humanos , Recém-Nascido , Gravidez , Ácidos Graxos , Hidrolases , Lipase Lipoproteica/genética , Nascimento Prematuro , RNA Mensageiro , Serina
2.
Hypertension ; 80(2): e17-e28, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519465

RESUMO

BACKGROUND: Smooth muscle cell (SMC) expansion is one key morphological hallmark of pathologically altered vasculature and a characteristic feature of pulmonary vascular remodeling in pulmonary hypertension. Normal embryonal vessel maturation requires successful coverage of endothelial tubes with SMC, which is dependent on ephrin-B2 and EphB4 ligand-receptor guidance system. In this study, we investigated the potential role of ephrin-B2 and EphB4 on neomuscularization in adult pulmonary vascular disease. METHODS AND RESULTS: Ephrin-B2 and EphB4 expression is preserved in smooth muscle and endothelial cells of remodeled pulmonary arteries. Chronic hypoxia-induced pulmonary hypertension was not ameliorated in mice with SMC-specific conditional ephrin-B2 knockout. In mice with global inducible ephrin-B2 knockout, pulmonary vascular remodeling and right ventricular hypertrophy upon chronic hypoxia exposure were significantly diminished compared to hypoxic controls, while right ventricular systolic pressure was unaffected. In contrast, EphB4 receptor kinase activity inhibition reduced right ventricular systolic pressure in hypoxia-induced pulmonary hypertension without affecting pulmonary vascular remodeling. Genetic deletion of ephrin-B2 in murine pulmonary artery SMC, and pharmacological inhibition of EphB4 in human pulmonary artery smooth muscle cells, blunted mitogen-induced cell proliferation. Loss of EphB4 signaling additionally reduced RhoA expression and weakened the interaction between human pulmonary artery smooth muscle cells and endothelial cells in a three-dimensional coculture model. CONCLUSIONS: In sum, pulmonary vascular remodeling was dependent on ephrin-B2-induced Eph receptor (erythropoietin-producing hepatocellular carcinoma receptor) forward signaling in SMC, while EphB4 receptor activity was necessary for RhoA expression in SMC, interaction with endothelial cells and vasoconstrictive components of pulmonary hypertension.


Assuntos
Células Endoteliais , Efrina-B2 , Adulto , Camundongos , Humanos , Animais , Efrina-B2/genética , Efrina-B2/metabolismo , Células Endoteliais/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Remodelação Vascular , Receptores Proteína Tirosina Quinases/metabolismo
3.
JACC Basic Transl Sci ; 8(12): 1539-1554, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205347

RESUMO

Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.

4.
Clin Proteomics ; 19(1): 46, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526981

RESUMO

The outbreak of a novel coronavirus (SARS-CoV-2) in 2019 led to a worldwide pandemic, which remains an integral part of our lives to this day. Coronavirus disease (COVID-19) is a flu like condition, often accompanied by high fever and respiratory distress. In some cases, conjointly with other co-morbidities, COVID-19 can become severe, leading to lung arrest and even death. Although well-known from a clinical standpoint, the mechanistic understanding of lethal COVID-19 is still rudimentary. Studying the pathology and changes on a molecular level associated with the resulting COVID-19 disease is impeded by the highly infectious nature of the virus and the concomitant sampling challenges. We were able to procure COVID-19 post-mortem lung tissue specimens by our collaboration with the BSL-3 laboratory of the Biobanking and BioMolecular resources Research Infrastructure Austria which we subjected to state-of-the-art quantitative proteomic analysis to better understand the pulmonary manifestations of lethal COVID-19. Lung tissue samples from age-matched non-COVID-19 patients who died within the same period were used as controls. Samples were subjected to parallel accumulation-serial fragmentation combined with data-independent acquisition (diaPASEF) on a timsTOF Pro and obtained raw data was processed using DIA-NN software. Here we report that terminal COVID-19 patients display an increase in inflammation, acute immune response and blood clot formation (with concomitant triggering of fibrinolysis). Furthermore, we describe that COVID-19 diseased lungs undergo severe extracellular matrix restructuring, which was corroborated on the histopathological level. However, although undergoing an injury, diseased lungs seem to have impaired proliferative and tissue repair signalling, with several key kinase-mediated signalling pathways being less active. This might provide a mechanistic link to post-acute sequelae of COVID-19 (PASC; "Long COVID"). Overall, we emphasize the importance of histopathological patient stratification when interpreting molecular COVID-19 data.

5.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328776

RESUMO

Non-alcoholic fatty liver disease is a pathology with a hard-to-detect onset and is estimated to be present in a quarter of the adult human population. To improve our understanding of the development of non-alcoholic fatty liver disease, we treated a human hepatoma cell line model, HepG2, with increasing concentrations of common fatty acids, namely myristic, palmitic and oleic acid. To reproduce more physiologically representative conditions, we also included combinations of these fatty acids and monitored the cellular response with an in-depth proteomics approach and imaging techniques. The two saturated fatty acids initially presented a similar phenotype of a dose-dependent decrease in growth rates and impaired lipid droplet formation. Detailed analysis revealed that the drop in the growth rates was due to delayed cell-cycle progression following myristic acid treatment, whereas palmitic acid led to cellular apoptosis. In contrast, oleic acid, as well as saturated fatty acid mixtures with oleic acid, led to a dose-dependent increase in lipid droplet volume without adverse impacts on cell growth. Comparing the effects of harmful single-fatty-acid treatments and the well-tolerated fatty acid mixes on the cellular proteome, we were able to differentiate between fatty-acid-specific cellular responses and likely common lipotoxic denominators.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Hepatócitos/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Proteoma/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884585

RESUMO

Hepatic stellate cells (HSC) are the major cellular drivers of liver fibrosis. Upon liver inflammation caused by a broad range of insults including non-alcoholic fatty liver, HSC transform from a quiescent into a proliferating, fibrotic phenotype. Although much is known about the pathophysiology of this process, exact cellular processes which occur in HSC and enable this transformation remain yet to be elucidated. In order to investigate this HSC transformation, we employed a simple, yet reliable model of HSC activation via an increase in growth medium serum concentration (serum activation). For that purpose, immortalized human LX-2 HSC were exposed to either 1% or 10% fetal bovine serum (FBS). Resulting quiescent (1% FBS) and activated (10% FBS) LX-2 cells were then subjected to in-depth mass spectrometry-based proteomics analysis as well as comprehensive phenotyping. Protein network analysis of activated LX-2 cells revealed an increase in the production of ribosomal proteins and proteins related to cell cycle control and migration, resulting in higher proliferation and faster migration phenotypes. Interestingly, we also observed a decrease in the expression of cholesterol and fatty acid biosynthesis proteins in accordance with a concomitant loss of cytosolic lipid droplets during activation. Overall, this work provides an update on HSC activation characteristics using contemporary proteomic and bioinformatic analyses and presents an accessible model for HSC activation. Data are available via ProteomeXchange with identifier PXD029121.


Assuntos
Células Estreladas do Fígado/metabolismo , Proteoma/análise , Proteoma/metabolismo , Soroalbumina Bovina/farmacologia , Animais , Bovinos , Movimento Celular , Proliferação de Células , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Proteoma/efeitos dos fármacos
7.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769478

RESUMO

Placental hypervascularization has been reported in pregnancy-related pathologies such as gestational diabetes mellitus (GDM). Nevertheless, the underlying causes behind this abnormality are not well understood. In this study, we addressed the expression of SUCNR1 (cognate succinate receptor) in human placental endothelial cells and hypothesized that the succinate-SUCNR1 axis might play a role in the placental hypervascularization reported in GDM. We measured significantly higher succinate levels in placental tissue lysates from women with GDM relative to matched controls. In parallel, SUCNR1 protein expression was upregulated in GDM tissue lysates as well as in isolated diabetic fetoplacental arterial endothelial cells (FpECAds). A positive correlation of SUCNR1 and vascular endothelial growth factor (VEGF) protein levels in tissue lysates indicated a potential link between the succinate-SUCNR1 axis and placental angiogenesis. In our in vitro experiments, succinate prompted hallmarks of angiogenesis in human umbilical vein endothelial cells (HUVECs) such as proliferation, migration and spheroid sprouting. These results were further validated in fetoplacental arterial endothelial cells (FpECAs), where succinate induced endothelial tube formation. VEGF gene expression was increased in response to succinate in both HUVECs and FpECAs. Yet, knockdown of SUCNR1 in HUVECs led to suppression of VEGF gene expression and abrogated the migratory ability and wound healing in response to succinate. In conclusion, our data underline SUCNR1 as a promising metabolic target in human placenta and as a potential driver of enhanced placental angiogenesis in GDM.


Assuntos
Neovascularização Fisiológica/genética , Placenta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Endotélio Vascular/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Placenta/irrigação sanguínea , Gravidez , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia
8.
J Nutr ; 150(10): 2707-2715, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32710763

RESUMO

BACKGROUND: In the settings of primary and secondary prevention for coronary artery disease (CAD), a crucial role is played by some key molecules involved in triglyceride (TG) metabolism, such as ApoCIII. Fatty acid (FA) intake is well recognized as a main determinant of plasma lipids, including plasma TG concentration. OBJECTIVES: The aim was to investigate the possible relations between the intakes of different FAs, estimated by their plasma concentrations, and circulating amounts of ApoCIII. METHODS: Plasma samples were obtained from 1370 subjects with or without angiographically demonstrated CAD (mean ± SD age: 60.6 ± 11.0 y; males: 75.8%; BMI: 25.9 ± 4.6 kg/m2; CAD: 73.3%). Plasma lipid, ApoCIII, and FA concentrations were measured. Data were analyzed by regression models adjusted for FAs and other potential confounders, such as sex, age, BMI, diabetes, smoking, and lipid-lowering therapies. The in vitro effects of FAs were tested by incubating HepG2 hepatoma cells with increasing concentrations of selected FAs, and the mRNA and protein contents in the cells were quantified by real-time RT-PCR and LC-MS/MS analyses. RESULTS: Among all the analyzed FAs, myristic acid (14:0) showed the most robust correlations with both TGs (R = 0.441, P = 2.6 × 10-66) and ApoCIII (R = 0.327, P = 1.1 × 10-31). By multiple regression analysis, myristic acid was the best predictor of both plasma TG and ApoCIII variability. Plasma TG and ApoCIII concentrations increased progressively at increasing concentrations of myristic acid, independently of CAD diagnosis and gender. Consistent with these data, in the in vitro experiments, an ∼2-fold increase in the expression levels of the ApoCIII mRNA and protein was observed after incubation with 250 µM myristic acid. A weaker effect (∼30% increase) was observed for palmitic acid, whereas incubation with oleic acid did not affect ApoCIII protein or gene expression. CONCLUSIONS: Plasma myristic acid is associated with increased ApoCIII concentrations in cardiovascular patients. In vitro experiments indicated that myristic acid stimulates ApoCIII expression in HepG2 cells.


Assuntos
Apolipoproteína C-III/sangue , Doenças Cardiovasculares/sangue , Ácido Mirístico/sangue , Idoso , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Mirístico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Sci Transl Med ; 12(525)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915304

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a major health problem without effective therapies. This study assessed the effects of histone deacetylase (HDAC) inhibition on cardiopulmonary structure, function, and metabolism in a large mammalian model of pressure overload recapitulating features of diastolic dysfunction common to human HFpEF. Male domestic short-hair felines (n = 31, aged 2 months) underwent a sham procedure (n = 10) or loose aortic banding (n = 21), resulting in slow-progressive pressure overload. Two months after banding, animals were treated daily with suberoylanilide hydroxamic acid (b + SAHA, 10 mg/kg, n = 8), a Food and Drug Administration-approved pan-HDAC inhibitor, or vehicle (b + veh, n = 8) for 2 months. Echocardiography at 4 months after banding revealed that b + SAHA animals had significantly reduced left ventricular hypertrophy (LVH) (P < 0.0001) and left atrium size (P < 0.0001) versus b + veh animals. Left ventricular (LV) end-diastolic pressure and mean pulmonary arterial pressure were significantly reduced in b + SAHA (P < 0.01) versus b + veh. SAHA increased myofibril relaxation ex vivo, which correlated with in vivo improvements of LV relaxation. Furthermore, SAHA treatment preserved lung structure, compliance, blood oxygenation, and reduced perivascular fluid cuffs around extra-alveolar vessels, suggesting attenuated alveolar capillary stress failure. Acetylation proteomics revealed that SAHA altered lysine acetylation of mitochondrial metabolic enzymes. These results suggest that acetylation defects in hypertrophic stress can be reversed by HDAC inhibitors, with implications for improving cardiac structure and function in patients.


Assuntos
Diástole , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Inibidores de Histona Desacetilases/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Gatos , Diástole/efeitos dos fármacos , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Vorinostat/farmacologia , Vorinostat/uso terapêutico
10.
Histochem Cell Biol ; 152(5): 377-390, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31541300

RESUMO

Function and dysfunction of endothelial cells are regulated by a multitude of factors. Endothelial cell research often requires in vitro cell culture experiments. Hence, various culture media specifically designed to promote endothelial cell growth are available. These strikingly differ in their composition: complex media contain endothelial cell growth supplement (ECGS), an extract produced of bovine brain with undefined amounts of biologically active compounds, whilst defined media contain selected growth factors in defined concentrations. We here compared the effect of seven purchasable endothelial cell culture media on colony outgrowth, proliferation, viability, in vitro angiogenesis and phenotype of mature primary human endothelial cells using feto-placental endothelial cells isolated from chorionic arteries (fpEC). The effect of media on colony outgrowth was additionally tested on umbilical cord blood-derived endothelial progenitor cells (ECFCs). Outgrowth, purity, proliferation and viability differed between media. Outgrowth of fpEC and ECFCs was best in a defined medium containing EGF, FGF2 and VEGF. By contrast, established fpEC isolations proliferated best in complex media containing ECGS, heparin and ascorbic acid. Also viability of cells was higher in complex media. In vitro angiogenesis was most intense in a defined medium containing the highest number of individual growth factors. FACS analysis of surface markers for endothelial cell subtypes revealed that endothelial phenotype of fpEC was unaffected by media composition. Our data demonstrate the fundamental effect of endothelial cell culture media on primary cell isolation success and behaviour. Whether the composition of supplements is suitable also for individual experiments needs to be tested specifically.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Fenótipo
11.
J Proteomics ; 181: 118-130, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654920

RESUMO

Myristic acid, the 14-carbon saturated fatty acid (C14:0), is associated to an increased cardiovascular disease risk. Since it is found in low concentration in cells, its specific properties have not been fully analyzed. The aim of this study was to explore the cell response to this fatty acid to help explaining clinical findings on the relationship between C14:0 and cardiovascular disease. The human liver HepG2 cell line was used to investigate the hepatic response to C14:0 in a combined proteomic and secretomic approach. A total of 47 intracellular and 32 secreted proteins were deregulated after treatments with different concentrations of C14:0. Data are available via ProteomeXchange (PXD007902). In addition, C14:0 treatment of primary murine hepatocytes confirmed that C14:0 induces lipid droplet accumulation and elevates perilipin-2 levels. Functional enrichment analysis revealed that C14:0 modulates lipid droplet formation and cytoskeleton organization, induce ER stress, changes in exosome and extracellular miRNA sorting in HepG2cells. Our data provide for the first time a proteomic profiling of the effects of C14:0 in human hepatoma cells and contribute to the elucidation of molecular mechanisms through which this fatty acid may cause adverse health effects. BIOLOGICAL SIGNIFICANCE: Myristic acid is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. This study is the first example of an integration of proteomic and secretomic analysis of HepG2 cells to investigate the specific properties and functional roles of myristic acid on hepatic cells. Our analyses will lead to a better understanding of the myristic acid induced effects and can elicit new diagnostic and treatment strategies based on altered proteins.


Assuntos
Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Exossomos/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Ácido Mirístico/farmacologia , Proteólise/efeitos dos fármacos , Proteoma/metabolismo , Animais , Citoesqueleto/patologia , Exossomos/patologia , Fígado Gorduroso/patologia , Células Hep G2 , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos
12.
J Proteome Res ; 17(4): 1415-1425, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457907

RESUMO

Adipose triglyceride lipase (ATGL) catalyzes the rate limiting step in triacylglycerol breakdown in adipocytes but is expressed in most tissues. The enzyme was shown to be lost in many human tumors, and its loss may play a role in early stages of cancer development. Here, we report that loss of ATGL supports a more-aggressive cancer phenotype in a model system in which ATGL was deleted in A549 lung cancer cells by CRISPR/Cas9. We observed that loss of ATGL led to triacylglycerol accumulation in lipid droplets and higher levels of cellular phospholipid and bioactive lipid species (lyso- and ether-phospholipids). Label-free quantitative proteomics revealed elevated expression of the pro-oncogene SRC kinase in ATGL depleted cells, which was also found on mRNA level and confirmed on protein level by Western blot. Consistently, higher expression of phosphorylated (active) SRC (Y416 phospho-SRC) was observed in ATGL-KO cells. Cells depleted of ATGL migrated faster, which was dependent on SRC kinase activity. We propose that loss of ATGL may thus increase cancer aggressiveness by activation of pro-oncogenic signaling via SRC kinase and increased levels of bioactive lipids.


Assuntos
Lipase/deficiência , Neoplasias Pulmonares/patologia , Triglicerídeos/metabolismo , Células A549 , Movimento Celular/efeitos dos fármacos , Deleção de Genes , Humanos , Lipase/genética , Metabolismo dos Lipídeos , Fenótipo , Proteômica , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/análise , Quinases da Família src/metabolismo , Quinases da Família src/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA