Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(18): 4121-4133, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598301

RESUMO

Glycine receptors (GlyRs), together with GABAA receptors, mediate postsynaptic inhibition in most spinal cord and hindbrain neurons. In several CNS regions, GlyRs are also expressed in presynaptic terminals. Here, we analysed the effects of a phospho-deficient mutation (S346A) in GlyR α3 subunits on inhibitory synaptic transmission in superficial spinal dorsal horn neurons, where this subunit is abundantly expressed. Unexpectedly, we found that not only were the amplitudes of evoked glycinergic inhibitory postsynaptic currents (IPSCs) significantly larger in GlyRα3(S346A) mice than in mice expressing wild-type α3GlyRs (GlyRα3(WT) mice), but so were those of GABAergic IPSCs. Decreased frequencies of spontaneously occurring glycinergic and GABAergic miniature IPSCs (mIPSCs) with no accompanying change in mIPSC amplitudes suggested a change in presynaptic transmitter release. Paired-pulse experiments on glycinergic IPSCs revealed an increased paired-pulse ratio and a smaller coefficient of variation in GlyRα3(S346A) mice, which together indicate a reduction in transmitter release probability and an increase in the number of releasable vesicles. Paired-pulse ratios of GABAergic IPSCs recorded in the presence of strychnine were not different between genotypes, while the coefficient of variation was smaller in GlyRα3(S346A) mice, demonstrating that the decrease in release probability was readily reversible by GlyR blockade, while the difference in the size of the pool of releasable vesicles remained. Taken together, our results suggest that presynaptic α3 GlyRs regulate synaptic glycine and GABA release in superficial dorsal horn neurons, and that this effect is potentially regulated by their phosphorylation status. KEY POINTS: A serine-to-alanine point mutation was introduced into the glycine receptor α3 subunit of mice. This point mutation renders α3 glycine receptors resistant to protein kinase A mediated phosphorylation but has otherwise only small effects on receptor function. Patch-clamp recordings from neurons in mouse spinal cord slices revealed an unexpected increase in the amplitudes of both glycinergic and GABAergic evoked inhibitory postsynaptic currents (IPSCs). Miniature IPSCs, paired-pulse ratios and synaptic variation analyses indicate a change in synaptic glycine and GABA release. The results strongly suggest that α3 subunit-containing glycine receptors are expressed on presynaptic terminals of inhibitory dorsal horn neurons where they regulate transmitter release.


Assuntos
Glicina , Receptores de Glicina , Animais , Camundongos , Ácido gama-Aminobutírico , Mutação , Células do Corno Posterior , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmissão Sináptica
2.
J Neurosci ; 43(19): 3567-3581, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977578

RESUMO

Metachromatic leukodystrophy (MLD) is a rare, inherited, demyelinating lysosomal storage disorder caused by mutations in the arylsulfatase-A gene (ARSA). In patients, levels of functional ARSA enzyme are diminished and lead to deleterious accumulation of sulfatides. Herein, we demonstrate that intravenous administration of HSC15/ARSA restored the endogenous murine biodistribution of the corresponding enzyme, and overexpression of ARSA corrected disease biomarkers and ameliorated motor deficits in Arsa KO mice of either sex. In treated Arsa KO mice, when compared with intravenously administered AAV9/ARSA, significant increases in brain ARSA activity, transcript levels, and vector genomes were observed with HSC15/ARSA Durability of transgene expression was established in neonate and adult mice out to 12 and 52 weeks, respectively. Levels and correlation between changes in biomarkers and ARSA activity required to achieve functional motor benefit was also defined. Finally, we demonstrated blood-nerve, blood-spinal and blood-brain barrier crossing as well as the presence of circulating ARSA enzyme activity in the serum of healthy nonhuman primates of either sex. Together, these findings support the use of intravenous delivery of HSC15/ARSA-mediated gene therapy for the treatment of MLD.SIGNIFICANCE STATEMENT Herein, we describe the method of gene therapy adeno-associated virus (AAV) capsid and route of administration selection leading to an efficacious gene therapy in a mouse model of metachromatic leukodystrophy. We demonstrate the therapeutic outcome of a new naturally derived clade F AAV capsid (AAVHSC15) in a disease model and the importance of triangulating multiple end points to increase the translation into higher species via ARSA enzyme activity and biodistribution profile (with a focus on the CNS) with that of a key clinically relevant biomarker.


Assuntos
Arilsulfatases , Terapia Genética , Leucodistrofia Metacromática , Animais , Camundongos , Macaca fascicularis , Arilsulfatases/genética , Camundongos Knockout , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/fisiopatologia , Leucodistrofia Metacromática/terapia , Modelos Animais de Doenças , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Encéfalo/enzimologia , Transtornos Motores/genética , Transtornos Motores/terapia , Administração Intravenosa , Biomarcadores/análise , Barreira Hematoencefálica , Masculino , Feminino , Humanos
3.
J Pharmacol Exp Ther ; 383(1): 56-69, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926871

RESUMO

Ion channels are targets of considerable therapeutic interest to address a wide variety of neurologic indications, including pain perception. Current pharmacological strategies have focused mostly on small molecule approaches that can be limited by selectivity requirements within members of a channel family or superfamily. Therapeutic antibodies have been proposed, designed, and characterized to alleviate this selectivity limitation; however, there are no Food and Drug Administration-approved therapeutic antibody-based drugs targeting ion channels on the market to date. Here, in an effort to identify novel classes of engineered ion channel modulators for potential neurologic therapeutic applications, we report the generation and characterization of six (EC50 < 25nM) Cys-loop receptor family monoclonal antibodies with modulatory function against rat and human glycine receptor alpha 1 (GlyRα1) and/or GlyRα3. These antibodies have activating (i.e., positive modulator) or inhibiting (i.e., negative modulator) profiles. Moreover, GlyRα3 selectivity was successfully achieved for two of the three positive modulators identified. When dosed intravenously, the antibodies achieved sufficient brain exposure to cover their calculated in vitro EC50 values. When compared head-to-head at identical exposures, the GlyRα3-selective antibody showed a more desirable safety profile over the nonselective antibody, thus demonstrating, for the first time, an advantage for GlyRα3-selectivity. Our data show that ligand-gated ion channels of the glycine receptor family within the central nervous system can be functionally modulated by engineered biologics in a dose-dependent manner and that, despite high protein homology between the alpha subunits, selectivity can be achieved within this receptor family, resulting in future therapeutic candidates with more desirable drug safety profiles. SIGNIFICANCE STATEMENT: This study presents immunization and multiplatform screening approaches to generate a diverse library of functional antibodies (agonist, potentiator, or inhibitory) raised against human glycine receptors (GlyRs). This study also demonstrates the feasibility of acquiring alpha subunit selectivity, a desirable therapeutic profile. When tested in vivo, these tool molecules demonstrated an increased safety profile in favor of GlyRα3-selectivity. These are the first reported functional GlyR antibodies that may open new avenues to treating central nervous system diseases with subunit selective biologics.


Assuntos
Anticorpos Monoclonais , Receptores de Glicina , Animais , Ratos , Humanos , Receptores de Glicina/metabolismo , Ligantes , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Transmissão Sináptica
4.
Pain ; 162(9): 2436-2445, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264571

RESUMO

ABSTRACT: Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.


Assuntos
Hiperalgesia , Receptores de Glicina/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hiperalgesia/genética , Camundongos , Fosforilação , Receptores de Glicina/genética , Corno Dorsal da Medula Espinal/metabolismo
5.
Biomolecules ; 11(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204137

RESUMO

Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.


Assuntos
Nociceptividade/fisiologia , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Endocanabinoides/farmacologia , Humanos , Nociceptividade/efeitos dos fármacos , Propofol/farmacologia , Estrutura Secundária de Proteína , Receptores de Glicina/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Zonisamida/farmacologia
6.
PLoS One ; 14(11): e0225582, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770409

RESUMO

The biodistribution of AAVHSC7, AAVHSC15, and AAVHSC17 following systemic delivery was assessed in cynomolgus macaques (Macaca fascicularis). Animals received a single intravenous (IV) injection of a self-complementary AAVHSC-enhanced green fluorescent protein (eGFP) vector and tissues were harvested at two weeks post-dose for anti-eGFP immunohistochemistry and vector genome analyses. IV delivery of AAVHSC vectors produced widespread distribution of eGFP staining in glial cells throughout the central nervous system, with the highest levels seen in the pons and lateral geniculate nuclei (LGN). eGFP-positive neurons were also observed throughout the central and peripheral nervous systems for all three AAVHSC vectors including brain, spinal cord, and dorsal root ganglia (DRG) with staining evident in neuronal cell bodies, axons and dendritic arborizations. Co-labeling of sections from brain, spinal cord, and DRG with anti-eGFP antibodies and cell-specific markers confirmed eGFP-staining in neurons and glia, including protoplasmic and fibrous astrocytes and oligodendrocytes. For all capsids tested, 50 to 70% of glial cells (S100-ß+) and on average 8% of neurons (NeuroTrace+) in the LGN were positive for eGFP expression. In the DRG, 45 to 62% of neurons and 8 to 12% of satellite cells were eGFP-positive for the capsids tested. eGFP staining was also observed in peripheral tissues with abundant staining in hepatocytes, skeletal- and cardio-myocytes and in acinar cells of the pancreas. Biodistribution of AAVHSC vector genomes in the central and peripheral organs generally correlated with eGFP staining and were highest in the liver for all AAVHSC vectors tested. These data demonstrate that AAVHSCs have broad tissue tropism and cross the blood-nerve and blood-brain-barriers following systemic delivery in nonhuman primates, making them suitable gene editing or gene transfer vectors for therapeutic application in human genetic diseases.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Dependovirus/genética , Vetores Genéticos/metabolismo , Administração Intravenosa , Animais , Gânglios Espinais/metabolismo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Macaca , Neuroglia/metabolismo , Neurônios/metabolismo , Distribuição Tecidual
7.
Cell Mol Life Sci ; 75(3): 447-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28791431

RESUMO

Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.


Assuntos
Analgésicos/uso terapêutico , Descoberta de Drogas , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Terapia de Alvo Molecular/métodos , Receptores de Glicina/fisiologia , Analgésicos/isolamento & purificação , Animais , Drogas em Investigação , Humanos
8.
ACS Chem Biol ; 12(9): 2427-2435, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28800217

RESUMO

The voltage-gated sodium channel NaV1.7 is a genetically validated pain target under investigation for the development of analgesics. A therapeutic with a less frequent dosing regimen would be of value for treating chronic pain; however functional NaV1.7 targeting antibodies are not known. In this report, we describe NaV1.7 inhibitory peptide-antibody conjugates as an alternate construct for potential prolonged channel blockade through chemical derivatization of engineered antibodies. We previously identified NaV1.7 inhibitory peptide GpTx-1 from tarantula venom and optimized its potency and selectivity. Tethering GpTx-1 peptides to antibodies bifunctionally couples FcRn-based antibody recycling attributes to the NaV1.7 targeting function of the peptide warhead. Herein, we conjugated a GpTx-1 peptide to specific engineered cysteines in a carrier anti-2,4-dinitrophenol monoclonal antibody using polyethylene glycol linkers. The reactivity of 13 potential cysteine conjugation sites in the antibody scaffold was tuned using a model alkylating agent. Subsequent reactions with the peptide identified cysteine locations with the highest conversion to desired conjugates, which blocked NaV1.7 currents in whole cell electrophysiology. Variations in attachment site, linker, and peptide loading established design parameters for potency optimization. Antibody conjugation led to in vivo half-life extension by 130-fold relative to a nonconjugated GpTx-1 peptide and differential biodistribution to nerve fibers in wild-type but not NaV1.7 knockout mice. This study describes the optimization and application of antibody derivatization technology to functionally inhibit NaV1.7 in engineered and neuronal cells.


Assuntos
Imunoconjugados/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Células HEK293 , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Masculino , Camundongos , Modelos Moleculares , Peptídeos/química , Peptídeos/farmacocinética , Distribuição Tecidual , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética
9.
Eur J Med Chem ; 137: 63-75, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28575722

RESUMO

Glycine receptors (GlyRs) are pentameric glycine-gated chloride ion channels that are enriched in the brainstem and spinal cord where they have been demonstrated to play a role in central nervous system (CNS) inhibition. Herein we describe two novel classes of glycine receptor potentiators that have been developed using similarity- and property-guided scaffold hopping enabled by parallel synthesis and pharmacophore-based virtual screening strategies. This effort resulted in the identification of novel, efficient and modular leads having favorable in vitro ADME profiles and high CNS multi-parameter optimization (MPO) scores, exemplified by azetidine sulfonamide 19 and aminothiazole sulfone (ent2)-20.


Assuntos
Descoberta de Drogas , Receptores de Glicina/antagonistas & inibidores , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
10.
Nat Struct Mol Biol ; 24(2): 108-113, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991902

RESUMO

Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.


Assuntos
Receptores de Glicina/química , Regulação Alostérica , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Glicina/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Subunidades Proteicas/química
11.
J Med Chem ; 60(3): 1105-1125, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28001399

RESUMO

Current pain therapeutics suffer from undesirable psychotropic and sedative side effects, as well as abuse potential. Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels expressed in nerves of the spinal dorsal horn, where their activation is believed to reduce transmission of painful stimuli. Herein, we describe the identification and hit-to-lead optimization of a novel class of tricyclic sulfonamides as allosteric GlyR potentiators. Initial optimization of high-throughput screening (HTS) hit 1 led to the identification of 3, which demonstrated ex vivo potentiation of glycine-activated current in mouse dorsal horn neurons from spinal cord slices. Further improvement of potency and pharmacokinetics produced in vivo proof-of-concept tool molecule 20 (AM-1488), which reversed tactile allodynia in a mouse spared-nerve injury (SNI) model. Additional structural optimization provided highly potent potentiator 32 (AM-3607), which was cocrystallized with human GlyRα3cryst to afford the first described potentiator-bound X-ray cocrystal structure within this class of ligand-gated ion channels (LGICs).


Assuntos
Receptores de Glicina/agonistas , Sulfonamidas/farmacologia , Animais , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Cell Sci ; 129(5): 898-911, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769899

RESUMO

Neuromuscular junctions (NMJs), the synapses made by motor neurons on muscle fibers, form during embryonic development but undergo substantial remodeling postnatally. Several lines of evidence suggest that α-dystrobrevin, a component of the dystrophin-associated glycoprotein complex (DGC), is a crucial regulator of the remodeling process and that tyrosine phosphorylation of one isoform, α-dystrobrevin-1, is required for its function at synapses. We identified a functionally important phosphorylation site on α-dystrobrevin-1, generated phosphorylation-specific antibodies to it and used them to demonstrate dramatic increases in phosphorylation during the remodeling period, as well as in nerve-dependent regulation in adults. We then identified proteins that bind to this site in a phosphorylation-dependent manner and others that bind to α-dystrobrevin-1 in a phosphorylation-independent manner. They include multiple members of the DGC, as well as α-catulin, liprin-α1, Usp9x, PI3K, Arhgef5 and Grb2. Finally, we show that two interactors, α-catulin (phosphorylation independent) and Grb2 (phosphorylation dependent) are localized to NMJs in vivo, and that they are required for proper organization of neurotransmitter receptors on myotubes.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Proteína Adaptadora GRB2/metabolismo , Junção Neuromuscular/metabolismo , Neuropeptídeos/metabolismo , Receptores Colinérgicos/metabolismo , alfa Catenina/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transmissão Sináptica
13.
PLoS One ; 9(9): e105895, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25188265

RESUMO

Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund's adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Insensibilidade Congênita à Dor/etiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Transtornos do Olfato/genética , Transtornos do Olfato/fisiopatologia , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/fisiopatologia , Limiar da Dor/fisiologia , Fenótipo , Células Receptoras Sensoriais/fisiologia
14.
Rapid Commun Mass Spectrom ; 28(2): 185-90, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24338966

RESUMO

RATIONALE: Although Desorption Electrospray Ionization (DESI) Mass Spectrometry Imaging (MSI) is uniquely suited for whole-body (WB) tissue distribution study of drugs, success in this area has been difficult. Here, we present WB tissue distribution studies using DESI-MSI and a new histological tissue-friendly solvent system. METHODS: Neonate pups were dosed subcutaneously (SC) with clozapine, compound 1, compound 2, or compound 3. Following euthanization by hypothermia, neonates underwent a transcardiac perfusion (saline) to remove blood. After cryosectioning, DESI-MSI was conducted for the WB tissue slides, followed sequentially by histological staining. RESULTS: Whole-body tissue imaging showed that clozapine and its N-oxide metabolite were distributed in significant amounts in the brain, spinal cord, liver, heart (ventricle), and lungs. Compound 1 was distributed mainly in the liver and muscle, and its mono-oxygenated metabolite was detected by DESI-MSI exclusively in the liver. Compound 2 was distributed mainly in the muscle and fatty tissue. Compound 3 was distributed mainly in fatty tissue and its metabolites were also mainly detected in the same tissue. CONCLUSIONS: The results demonstrate the successful application of DESI-MSI in whole-body tissue distribution studies of drugs and metabolites in combination with sequential histology staining for anatomy. The results also identified lipophilicity as the driving force in the tissue distribution of the three Amgen compounds.


Assuntos
Antipsicóticos/farmacocinética , Clozapina/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Imagem Corporal Total/métodos , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Distribuição Tecidual
15.
Biophys J ; 97(10): 2771-9, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19917231

RESUMO

Micropatterned poly(dimethylsiloxane) substrates fabricated by soft lithography led to large-scale orientation of myoblasts in culture, thereby controlling the orientation of the myotubes they formed. Fusion occurred on many chemically identical surfaces in which varying structures were arranged in square or hexagonal lattices, but only a subset of patterned surfaces yielded aligned myotubes. Remarkably, on some substrates, large populations of myotubes oriented at a reproducible acute angle to the lattice of patterned features. A simple geometrical model predicts the angle and extent of orientation based on maximizing the contact area between the myoblasts and patterned topographic surfaces. Micropatterned substrates also provided short-range cues that influenced higher-order functions such as the localization of focal adhesions and accumulation of postsynaptic acetylcholine receptors. Our results represent what we believe is a new approach for musculoskeletal tissue engineering, and our model sheds light on mechanisms of myotube alignment in vivo.


Assuntos
Dimetilpolisiloxanos , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/fisiologia , Sinapses/fisiologia , Alicerces Teciduais , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Imunofluorescência , Membranas Artificiais , Camundongos , Receptores Colinérgicos/metabolismo , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
16.
Proc Natl Acad Sci U S A ; 106(43): 18373-8, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19822767

RESUMO

A critical step in synapse formation is the clustering of neurotransmitter receptors in the postsynaptic membrane, directly opposite the nerve terminal. At the neuromuscular junction, a widely studied model synapse, acetylcholine receptors (AChRs) initially aggregate to form an ovoid postsynaptic plaque. As the synapse matures, the plaque becomes perforated and is eventually transformed into a complex, branched structure. We found that this transformation also occurs in myotubes cultured in the absence of neurons, and used this system to seek machinery that orchestrates postsynaptic maturation. We show that perforations in the AChR aggregate bear structures resembling podosomes, dynamic actin-rich adhesive organelles involved in matrix remodeling in non-neuronal cells but not described in neural structures. The location and dynamics of synaptic podosomes are spatiotemporally correlated with changes in AChR aggregate topology, and pharmacological disruption of podosomes leads to rapid alterations in AChR organization. Our results indicate that synaptic podosomes play critical roles in maturation of the postsynaptic membrane.


Assuntos
Fibras Musculares Esqueléticas/citologia , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Endocitose , Matriz Extracelular/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Ratos , Especificidade por Substrato
17.
Dev Neurobiol ; 67(5): 521-34, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17443806

RESUMO

Neuronal synapse formation is a multistep process regulated by several pre- and postsynaptic adhesion and signaling proteins. Recently, we found that agrin acts as one such synaptogenic factor at neuronal synapses in the PNS by demonstrating that structural synapse formation is impaired in the superior cervical ganglia (SCG) of z+ agrin-deficient mice and in SCG cultures derived from those animals. Here, we tested whether synaptic function is defective in agrin-null (AGD-/-) ganglia and began to define agrin's mechanism of action. Our electrophysiological recordings of compound action potentials showed that presynaptic stimulation evoked action potentials in approximately 40% of AGD-/- ganglionic neurons compared to 90% of wild-type neurons; moreover, transmission could not be potentiated as in wild-type or z+ agrin-deficient ganglia. Intracellular recordings also showed that nerve-evoked excitatory postsynaptic potentials in AGD-/- neurons were only 1/3 the size of those in wild-type neurons and mostly subthreshold. Consistent with these defects in transmission, we found an approximately 40-50% decrease in synapse number in AGD-/- ganglia and cultures, and decreased levels of differentiation at the residual synapses in culture. Furthermore, surface levels of acetylcholine receptors (AChRs) were equivalent in cultured AGD-/- and wild-type neurons, and depolarization reduced the synaptic localization of AChRs in AGD-/- but not wild-type neurons. These findings provide the first direct demonstration that agrin is required for proper structural and functional development of an interneuronal synapse in vivo. Moreover, they suggest a novel role for agrin, in stabilizing the postsynaptic density of nAChR at nascent neuronal synapses.


Assuntos
Agrina/fisiologia , Sistema Nervoso Autônomo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Agrina/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/fisiologia , Gânglios Autônomos/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Receptores Colinérgicos/genética , Receptores Colinérgicos/fisiologia , Gânglio Cervical Superior/fisiologia , Transmissão Sináptica/genética
18.
Brain Behav Evol ; 65(3): 143-56, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15677860

RESUMO

Using immunohistochemistry in light microscopy, the myelin basic protein and proteolipid protein were localized on sections of the spinal cord enlargements of opossums, Monodelphis domestica, to determine the timecourse of myelinogenesis therein and compare it with other events of motor systems development. Additional tissue not processed for immunohistochemistry was prepared for transmission electron microscopy. No immunolabeling for either protein occurred on spinal sections from the newborn opossum, but in electron microscopy occasional fibers surrounded by loose, irregular membranous rings were seen on the outskirts of the ventral horn. Immunolabeling was detected first in the brachial enlargement during the second week, presumably on motoneuronal, vestibular and reticular axons. The areas of the dorsal columns, other spino-encephalic, reticulospinal and propriospinal projections became labeled in the third week, and the area of rubrospinal axons at 4 weeks. In the brachial gray matter, immunolabeling appeared along ventrodorsal and lateromedial gradients from the fourth to seventh weeks. Labeling developed similarly in the white and gray matter of the lumbosacral enlargement, but 3-5 days later than at brachial levels. Labeling intensity in the white and gray matter increased until at least 4 months, but remained light in laminae I-III. Thus, myelinogenesis in the spinal cord enlargements of the opossum is protracted and follows general rostrocaudal, ventrodorsal and lateromedial sequences. It occurs later than synaptogenesis at comparable levels of the cord, but earlier than myelinogenesis in the corresponding ventral and dorsal roots. Spinal myelinogenesis correlates with the development of sensorimotor reflexes, weight support and quadrupedal locomotion.


Assuntos
Bainha de Mielina/fisiologia , Gambás/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/imunologia , Axônios/fisiologia , Axônios/ultraestrutura , Corantes , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Proteína Básica da Mielina/biossíntese , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Proteolipídeos/biossíntese , Medula Espinal/ultraestrutura
19.
J Cell Biol ; 158(6): 1109-18, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12221070

RESUMO

Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrin's role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.


Assuntos
Agrina/fisiologia , Gânglios Simpáticos/crescimento & desenvolvimento , Sinapses/ultraestrutura , Potenciais de Ação , Agrina/genética , Animais , Animais Recém-Nascidos , Biomarcadores/análise , Contagem de Células , Células Cultivadas , Fibras Colinérgicas/metabolismo , Eletrofisiologia , Gânglios Simpáticos/citologia , Gânglios Simpáticos/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Ratos , Ratos Sprague-Dawley , Receptores Colinérgicos/análise , Receptores Colinérgicos/metabolismo , Receptores Nicotínicos/análise , Gânglio Cervical Superior/citologia , Sinapses/química , Sinapses/fisiologia , Sinaptofisina/análise , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...