Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Cell Rep ; 43(5): 114250, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762882

RESUMO

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.

2.
Cancer Cell ; 42(5): 747-758, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670090

RESUMO

Cancer is a progressive disease that can develop and evolve over decades, with inflammation playing a central role at each of its stages, from tumor initiation to metastasis. In this context, macrophages represent well-established bridges reciprocally linking inflammation and cancer via an array of diverse functions that have spurred efforts to classify them into subtypes. Here, we discuss the intertwines between macrophages, inflammation, and cancer with an emphasis on temporal dynamics of macrophage diversity and functions in pre-malignancy and cancer. By instilling temporal dynamism into the more static classic view of tumor-associated macrophage biology, we propose a new framework to better contextualize their significance in the inflammatory processes that precede and result from the onset of cancer and shape its evolution.


Assuntos
Inflamação , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Inflamação/imunologia , Inflamação/patologia , Microambiente Tumoral/imunologia , Macrófagos/imunologia
3.
Nat Commun ; 15(1): 2113, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459052

RESUMO

Macrophages are abundant immune cells in the microenvironment of diffuse large B-cell lymphoma (DLBCL). Macrophage estimation by immunohistochemistry shows varying prognostic significance across studies in DLBCL, and does not provide a comprehensive analysis of macrophage subtypes. Here, using digital spatial profiling with whole transcriptome analysis of CD68+ cells, we characterize macrophages in distinct spatial niches of reactive lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences between macrophages within RLTs (light zone /dark zone, germinal center/ interfollicular), and between disease states (RLTs/ DLBCL), which we then use to generate six spatially-derived macrophage signatures (MacroSigs). We proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell RNA-sequencing datasets, and in gene-expression data from multiple DLBCL cohorts. We show that specific MacroSigs are associated with cell-of-origin subtypes and overall survival in DLBCL. This study provides a spatially-resolved whole-transcriptome atlas of macrophages in reactive and malignant lymphoid tissues, showing biological and clinical significance.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Perfilação da Expressão Gênica , Transcriptoma , Centro Germinativo/patologia , Microambiente Tumoral/genética
4.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490958

RESUMO

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Assuntos
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Ascite/metabolismo , Ascite/patologia , Microambiente Tumoral , Proteômica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/diagnóstico
5.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
6.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309272

RESUMO

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Animais , Camundongos , Microglia , Encéfalo/metabolismo , Osteopontina/metabolismo
8.
Sci Rep ; 14(1): 62, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167979

RESUMO

The percentage of macrophage subpopulations based on their origins in the adult cochlea remains unclear. This study aimed to elucidate the origins of cochlear macrophages during the onset phase and development of auditory function. We used three types of mice: wildtype ICR mice, colony-stimulating factor 1 receptor (Csf1r)-deficient mice, and Ms4a3Cre-Rosa tdTomato (Ms4a3tdT) transgenic mice. Macrophages were labeled with ionized calcium-binding adapter molecule 1 (Iba1), which is specific to more mature macrophages, and CD11b, which is specific to monocyte lineage. We investigated the spatial and temporal distribution patterns of resident macrophages in the cochlea during the postnatal and early adult stages. During the adult stages, the rate of monocytes recruited from the systemic circulation increased; moreover, Iba1+/CD11b- cochlear macrophages gradually decreased with age. Fate mapping of monocytes using Ms4a3tdT transgenic mice revealed an increased proportion of bone marrow-derived cochlear macrophages in the adult stage. Contrastingly, the proportion of yolk sac- and fetal liver-derived tissue-resident macrophages decreased steadily with age. This heterogeneity could be attributed to differences in environmental niches within the tissue or at the sub-tissue levels. Future studies should investigate the role of cochlear macrophages in homeostasis, inflammation, and other diseases, including infection, autoimmune, and metabolic diseases.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Camundongos Endogâmicos ICR , Macrófagos/metabolismo , Camundongos Transgênicos , Cóclea , Homeostase
9.
Nat Commun ; 15(1): 811, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280871

RESUMO

Eosinophils are a group of granulocytes well known for their capacity to protect the host from parasites and regulate immune function. Diverse biological roles for eosinophils have been increasingly identified, but the developmental pattern and regulation of the eosinophil lineage remain largely unknown. Herein, we utilize the zebrafish model to analyze eosinophilic cell differentiation, distribution, and regulation. By identifying eslec as an eosinophil lineage-specific marker, we establish a Tg(eslec:eGFP) reporter line, which specifically labeled cells of the eosinophil lineage from early life through adulthood. Spatial-temporal analysis of eslec+ cells demonstrates their organ distribution from larval stage to adulthood. By single-cell RNA-Seq analysis, we decipher the eosinophil lineage cells from lineage-committed progenitors to mature eosinophils. Through further genetic analysis, we demonstrate the role of Cebp1 in balancing neutrophil and eosinophil lineages, and a Cebp1-Cebpß transcriptional axis that regulates the commitment and differentiation of the eosinophil lineage. Cross-species functional comparisons reveals that zebrafish Cebp1 is the functional orthologue of human C/EBPεP27 in suppressing eosinophilopoiesis. Our study characterizes eosinophil development in multiple dimensions including spatial-temporal patterns, expression profiles, and genetic regulators, providing for a better understanding of eosinophilopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Eosinófilos , Peixe-Zebra , Animais , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Eosinófilos/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
10.
J Immunol ; 212(6): 1012-1021, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251913

RESUMO

It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by ß-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.


Assuntos
Coinfecção , Vírus da Influenza A , Animais , Cães , Camundongos , Pulmão , Macrófagos , Macrófagos Alveolares , Fagocitose , Fígado
11.
Nat Cancer ; 5(1): 167-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168935

RESUMO

Onco-fetal reprogramming of the tumor ecosystem induces fetal developmental signatures in the tumor microenvironment, leading to immunosuppressive features. Here, we employed single-cell RNA sequencing, spatial transcriptomics and bulk RNA sequencing to delineate specific cell subsets involved in hepatocellular carcinoma (HCC) relapse and response to immunotherapy. We identified POSTN+ extracellular matrix cancer-associated fibroblasts (EM CAFs) as a prominent onco-fetal interacting hub, promoting tumor progression. Cell-cell communication and spatial transcriptomics analysis revealed crosstalk and co-localization of onco-fetal cells, including POSTN+ CAFs, FOLR2+ macrophages and PLVAP+ endothelial cells. Further analyses suggest an association between onco-fetal reprogramming and epithelial-mesenchymal transition (EMT), tumor cell proliferation and recruitment of Treg cells, ultimately influencing early relapse and response to immunotherapy. In summary, our study identifies POSTN+ CAFs as part of the HCC onco-fetal niche and highlights its potential influence in EMT, relapse and immunotherapy response, paving the way for the use of onco-fetal signatures for therapeutic stratification.


Assuntos
Carcinoma Hepatocelular , Receptor 2 de Folato , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Ecossistema , Células Endoteliais , Movimento Celular/genética , Doença Crônica , Recidiva , Imunoterapia , Microambiente Tumoral/genética
12.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
13.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091996

RESUMO

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Assuntos
Tecido Adiposo Marrom , Leptina , Animais , Humanos , Camundongos , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Interleucina-33/genética , Interleucina-33/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Termogênese/fisiologia
14.
Nature ; 625(7993): 166-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057662

RESUMO

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Assuntos
Medula Óssea , Carcinogênese , Interleucina-4 , Mielopoese , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Monócitos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos
15.
Methods Mol Biol ; 2713: 269-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639129

RESUMO

Spectral flow cytometry improves flow cytometry panels by resolving the full emission spectra of individual fluorophores, allowing greater flexibility to incorporate more fluorochromes when designing multicolor panels. Additionally, the spectral approach captures the autofluorescence of a sample or cell population (e.g., macrophages, which are highly autofluorescent) that can be considered during unmixing for improved downstream analyses. As the increased complexity of macrophage heterogeneity unravels in the scientific community, it is crucial to obtain high-dimensional data at the single-cell level to resolve these populations.


Assuntos
Citometria de Fluxo , Macrófagos , Corantes Fluorescentes , Ionóforos
16.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38134933

RESUMO

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Assuntos
Glioblastoma , Humanos , Perfilação da Expressão Gênica , Glioblastoma/patologia , Imunoterapia , Células Matadoras Naturais , Macrófagos , Microambiente Tumoral , Análise de Célula Única
17.
J Allergy Clin Immunol ; 153(4): 1083-1094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110059

RESUMO

BACKGROUND: Impaired interferon response and allergic sensitization may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDCs) play a key role in antiviral immunity as critical producers of type I interferons. pDCs also express the high-affinity IgE receptor through which type I interferon production may be negatively regulated. Whether antiviral function of pDCs is associated with recurrent episodes of wheeze in young children is not well understood. OBJECTIVE: We sought to evaluate the phenotype and function of circulating pDCs in children with a longitudinally defined wheezing phenotype. METHODS: We performed multiparameter flow cytometry on PBMCs from 38 children presenting to the emergency department with an acute episode of respiratory wheeze and 19 controls. RNA sequencing on isolated pDCs from the same individuals was also performed. For each subject, their longitudinal exacerbation phenotype was determined using the Western Australia public hospital database. RESULTS: We observed a significant depletion of circulating pDCs in young children with a persistent phenotype of wheeze. The same individuals also displayed upregulation of the FcεRI on their pDCs. Based on transcriptomic analysis, pDCs from these individuals did not mount a robust systemic antiviral response as observed in children who displayed a nonrecurrent wheezing phenotype. CONCLUSIONS: Our data suggest that circulating pDC phenotype and function are altered in young children with a persistent longitudinal exacerbation phenotype. Expression of high-affinity IgE receptor is increased and their function as major interferon producers is impaired during acute exacerbations of wheeze.


Assuntos
Asma , Interferon Tipo I , Criança , Humanos , Pré-Escolar , Receptores de IgE , Sons Respiratórios , Interferon Tipo I/metabolismo , Células Dendríticas
18.
Immunity ; 56(12): 2790-2802.e6, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091952

RESUMO

Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing mitogen-activated protein kinase (MAPK)-activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some individuals with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we showed that LCH-ND was caused by myeloid cells that were clonal with peripheral LCH cells. Circulating BRAFV600E+ myeloid cells caused the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiated into senescent, inflammatory CD11a+ macrophages that accumulated in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced peripheral inflammation, brain parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent targetable mechanisms of LCH-ND.


Assuntos
Histiocitose de Células de Langerhans , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/patologia , Histiocitose de Células de Langerhans/terapia , Encéfalo/metabolismo , Células Mieloides/metabolismo , Diferenciação Celular
19.
Artigo em Inglês | MEDLINE | ID: mdl-38062286

RESUMO

While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...