Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(14): 143803, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862648

RESUMO

Optical traps using nonconservative forces instead of conservative intensity-gradient forces expand the trap parameter space. Existing traps with nonconservative helicity-dependent forces are limited to chiral particles and fields with helicity gradients. We relax these constraints by proposing helicity and polarization gradient optical trapping of achiral particles in evanescent fields. We further propose an optical switching system in which a microsphere is trapped and optically manipulated around a microfiber using polarization gradients. Our Letter deepens the understanding of light-matter interactions in polarization gradient fields and expands the range of compatible particles and stable trapping fields.

2.
Phys Rev Lett ; 130(18): 183601, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204895

RESUMO

Spin-orbit interactions in evanescent fields have recently attracted significant interest. In particular, the transfer of the Belinfante spin momentum perpendicular to the propagation direction generates polarization-dependent lateral forces on particles. However, it is still elusive as to how the polarization-dependent resonances of large particles synergize with the incident light's helicity and resultant lateral forces. Here, we investigate these polarization-dependent phenomena in a microfiber-microcavity system where whispering-gallery-mode resonances exist. This system allows for an intuitive understanding and unification of the polarization-dependent forces. Contrary to previous studies, the induced lateral forces at resonance are not proportional to the helicity of incident light. Instead, polarization-dependent coupling phases and resonance phases generate extra helicity contributions. We propose a generalized law for optical lateral forces and find the existence of optical lateral forces even when the helicity of incident light is zero. Our work provides new insights into these polarization-dependent phenomena and an opportunity to engineer polarization-controlled resonant optomechanical systems.

3.
Nat Commun ; 14(1): 495, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717562

RESUMO

Optical resonators enable the generation, manipulation, and storage of electromagnetic waves. The physics underlying their operation is determined by the interference of electromagnetic waves, giving rise to the resonance spectrum. This mechanism causes the limitations and trade-offs of resonator design, such as the fixed relationship between free spectral range, modal linewidth, and the resonator's refractive index and size. Here, we introduce a new class of optical resonators, generating resonances by designing the optical path through transverse mode coupling in a cascaded process created by mode-converting mirrors. The generalized round-trip phase condition leads to resonator characteristics that are markedly different from Fabry-Perot resonators and can be tailored over a wide range. We confirm the existence of these modes experimentally in an integrated waveguide cavity with mode converters coupling transverse modes into one supermode. We also demonstrate a transverse mode-independent transmission and show that its engineered spectral properties agree with theoretical predictions.

4.
Sci Rep ; 12(1): 3744, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260611

RESUMO

Expected values are the metric most often used to judge human decision-making; when humans make decisions that do not optimize expected values, these decisions are considered irrational. However, while convenient, expected values do not necessarily describe the evolution of an individual after making a series of decisions. This dichotomy lies at the core of ergodicity breaking, where the expected value (ensemble average) differs from the temporal average of one individual. In this paper, we explore whether the intuition behind human decision-making optimizes for expected values or instead takes time growth rates into account. We do this using several stated choice experiments, where participants choose between two stochastic bets and try to optimize their capital. To evaluate the intuitive choice, we compare two groups, with and without perceived time pressure. We find a significant difference between the responses of the timed and the control group, depending on the dynamic of the choices. In an additive dynamic, where ergodicity is not broken, we observe no effect of time pressure on the decisions. In the non-ergodic, multiplicative setting, we find a significant difference between the two groups. The group that chooses under time pressure is more likely to make the choice that optimizes the experiment's growth rate. The results of this experiment contradict the idea that people are irrational decision-makers when they do not optimize their expected value. The intuitive decisions deviate more from the expected value optimum in the non-ergodic part of our experiment and lead to more optimal decisions.


Assuntos
Tomada de Decisões , Intuição , Humanos , Inquéritos e Questionários
5.
Science ; 369(6502): 436-440, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703876

RESUMO

The electromagnetic near field enables subwavelength applications such as near-field microscopy and nanoparticle manipulation. Present methods to structure the near field rely on optical antenna theory, involving nanostructures that locally convert propagating waves into confined near-field patterns. We developed a theory of remote rather than local near-field shaping, based on cascaded mode conversion and interference of counterpropagating guided waves with different propagation constants. We demonstrate how to structure at will the longitudinal and transverse variation of the near field, allowing for distributions beyond the conventional monotonic decay of the evanescent field. We provide an experimental realization that confirms our theory. Our method applies to fields with arbitrary polarization states and mode profiles, providing a path toward three-dimensional control of the near field.

6.
Sci Rep ; 9(1): 14879, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619705

RESUMO

Current day high speed optical communication systems employ photonic circuits using platforms such as silicon photonics. In these systems, the polarization state of light drifts due to effects such as polarization mode dispersion and nonlinear phenomena generated by photonic circuit building blocks. As the complexity, the number, and the variety of these building blocks grows, the demand increases for an in-situ polarization determination strategy. Here, we show that the transfer of the Belinfante momentum to particles in the evanescent field of waveguides depends in a non-trivial way on the polarization state of light within that waveguide. Surprisingly, we find that the maxima and minima of the lateral force are not produced with circularly polarized light, corresponding to the north and south poles of the Poincaré sphere. Instead, the maxima are shifted along the great circle of the sphere due to the phase differences between the scattered TE and TM components of light. This effect allows for an unambiguous reconstruction of the local polarization state of light inside a waveguide. Importantly, this technique depends on interaction with only the evanescent tails of the fields, allowing for a minimally invasive method to probe the polarization within a photonic chip.

7.
Phys Rev Lett ; 120(22): 223901, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906156

RESUMO

Recently, it was shown that a Mie particle in an evanescent field ought to experience optical forces that depend on the helicity of the totally internally reflected beam. As yet, a direct measurement of such helicity-dependent forces has been elusive, as the widely differing force magnitudes in the three spatial dimensions place stringent demands on a measurement's sensitivity and range. In this study, we report the simultaneous measurement of all components of this polarization-dependent optical force by using a 3D force spectroscopy technique with femtonewton sensitivity. The vector force fields are compared quantitatively with our theoretical calculations as the polarization state of the incident light is varied and show excellent agreement. By plotting the 3D motion of the Mie particle in response to the switched force field, we offer visual evidence of the effect of spin momentum on the Poynting vector of an evanescent optical field.

8.
Phys Rev Lett ; 120(19): 197402, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799230

RESUMO

Artificially structured metasurfaces make use of specific configurations of subwavelength resonators to efficiently manipulate electromagnetic waves. Additionally, optomechanical metasurfaces have the desired property that their actual configuration may be tuned by adjusting the power of a pump beam, as resonators move to balance pump-induced electromagnetic forces with forces due to elastic filaments or substrates. Although the reconfiguration time of optomechanical metasurfaces crucially determines their performance, the transient dynamics of unit cells from one equilibrium state to another is not understood. Here, we make use of tools from nonlinear dynamics to analyze the transient dynamics of generic optomechanical metasurfaces based on a damped-resonator model with one configuration parameter. We show that the reconfiguration time of optomechanical metasurfaces is not only limited by the elastic properties of the unit cell but also by the nonlinear dependence of equilibrium states on the pump power. For example, when switching is enabled by hysteresis phenomena, the reconfiguration time is seen to increase by over an order of magnitude. To illustrate these results, we analyze the nonlinear dynamics of a bilayer cross-wire metasurface whose optical activity is tuned by an electromagnetic torque. Moreover, we provide a lower bound for the configuration time of generic optomechanical metasurfaces. This lower bound shows that optomechanical metasurfaces cannot be faster than state-of-the-art switches at reasonable powers, even at optical frequencies.

9.
Proc Natl Acad Sci U S A ; 114(42): 11087-11091, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973939

RESUMO

We examine the motion of periodically driven and optically tweezed microspheres in fluid and find a rich variety of dynamic regimes. We demonstrate, in experiment and in theory, that mean particle motion in 2D is rarely parallel to the direction of the applied force and can even exhibit elliptical orbits with nonzero orbital angular momentum. The behavior is unique in that it depends neither on the nature of the microparticles nor that of the excitation; rather, angular momentum is introduced by the particle's interaction with the anisotropic fluid and optical trap environment. Overall, we find this motion to be highly tunable and predictable.

10.
Phys Rev Lett ; 119(13): 137402, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341706

RESUMO

The enhancement of optical forces has enabled a variety of technological applications that rely on the optical control of small objects and devices. Unfortunately, optical forces are still too small for the convenient actuation of integrated switches and waveguide couplers. Here we show how the optical gradient force can be enhanced by an order of magnitude by making use of gauge materials inside two evanescently coupled waveguides. To this end, the gauge materials inside the cores should emulate imaginary vector potentials for photons pointing perpendicularly to the waveguide plane. Depending on the relative orientation of the vector potentials in neighboring waveguides, i.e., pointing away from or towards each other, the conventional attractive force due to an even mode profile may be enhanced, suppressed, or may even become repulsive. This and other new features indicate that the implementation of complex-valued vector potentials with non-Hermitian waveguide cores may further enhance our control over mode profiles and the associated optical forces.

11.
Phys Rev Lett ; 116(22): 228001, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314738

RESUMO

We demonstrate thermally limited force spectroscopy using a probe formed by a dielectric microsphere optically trapped in water near a dielectric surface. We achieve force resolution below 1 fN in 100 s, corresponding to a 2 Å rms displacement of the probe. Our measurement combines a calibrated evanescent wave particle tracking technique and a lock-in detection method. We demonstrate the accuracy of our method by measurement of the height-dependent force exerted on the probe by an evanescent wave, the results of which are in agreement with Mie theory calculations.

12.
Philos Trans A Math Phys Eng Sci ; 373(2049)2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26217057

RESUMO

Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics.

13.
Phys Rev Lett ; 113(16): 167402, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361279

RESUMO

In high energy physics, unknown particles are identified by determining their mass from the Cherenkov radiation cone that is emitted as they pass through the detector apparatus. However, at higher particle momentum, the angle of the Cherenkov cone saturates to a value independent of the mass of the generating particle, making it difficult to effectively distinguish between different particles. Here, we show how the geometric formalism of transformation optics can be applied to describe the Cherenkov cone in an arbitrary anisotropic medium. On the basis of these results, we propose a specific anisotropic metamaterial to control Cherenkov radiation, leading to enhanced sensitivity for particle identification at higher momentum.

14.
Phys Rev Lett ; 110(5): 057401, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414043

RESUMO

We demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics. A thin layer of double-negative or single-negative metamaterial can shrink the interwaveguide distance perceived by light, resulting in a more than tenfold enhancement of the optical force. This process is remarkably robust to the dissipative loss normally observed in metamaterials. Our results provide an alternative way to boost optical gradient forces in nanophotonic actuation systems and may be combined with existing resonator-based enhancement methods to produce optical forces with an unprecedented amplitude.

15.
Opt Express ; 18(5): 5350-5, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389549

RESUMO

According to general relativity, the frequency of electromagnetic radiation is altered by the expansion of the universe. This effect-commonly referred to as the cosmological redshift--is of utmost importance for observations in cosmology. Here we show that this redshift can be reproduced on a much smaller scale using an optical analogue inside a dielectric metamaterial with time-dependent material parameters. To this aim, we apply the framework of transformation optics to the Robertson-Walker metric. We demonstrate theoretically how perfect redshifting or blueshifting of an electromagnetic wave can be achieved without the creation of sidebands with a device of finite length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...