Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biometals ; 29(6): 965-980, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27623995

RESUMO

This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 µm filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites.


Assuntos
Desulfovibrio/metabolismo , Nanopartículas/química , Urânio/química , Bicarbonatos/química , Soluções Tampão , Desulfovibrio/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Oxirredução
2.
J Environ Qual ; 44(5): 1366-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436254

RESUMO

The transport and fate of bacteria in porous media is influenced by physicochemical and biological properties. This study investigated the effect of swimming motility on the attachment of cells to silica surfaces through comprehensive analysis of cell deposition in model porous media. Distinct motilities were quantified for different strains using global and cluster-based statistical analyses of microscopic images taken under no-flow condition. The wild-type, flagellated strain DJ showed strong swimming as a result of the actively swimming subpopulation whose average speed was 25.6 µm/s; the impaired swimming of strain DJ77 was attributed to the lower average speed of 17.4 µm/s in its actively swimming subpopulation; and both the nonflagellated JZ52 and chemically treated DJ cells were nonmotile. The approach and deposition of these bacterial cells were analyzed in porous media setups, including single-collector radial stagnation point flow cells (RSPF) and two-dimensional multiple-collector micromodels under well-defined hydrodynamic conditions. In RSPF experiments, both swimming and nonmotile cells moved with the flow when at a distance ≥20 µm above the collector surface. Closer to the surface, DJ cells showed both horizontal and vertical movement, limiting their contact with the surface, while chemically treated DJ cells moved with the flow to reach the surface. These results explain how wild-type swimming reduces attachment. In agreement, the deposition in micromodels was also lowest for DJ compared with those for DJ77 and JZ52. Wild-type swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors. Conducted under environmentally relevant hydrodynamic conditions, the results suggest that swimming motility is an important characteristic for bacterial deposition and transport in the environment.

3.
J Contam Hydrol ; 171: 32-41, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25461885

RESUMO

A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/análise , Hidrocarbonetos Clorados/química , Compostos Orgânicos Voláteis/química , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental/economia , Modelos Teóricos , Projetos Piloto , Solventes/química , Tetracloroetileno/química , Tricloroetileno/química
4.
J Contam Hydrol ; 153: 78-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24035861

RESUMO

A Bayesian parameter estimation approach is developed for the estimation of joint probability distribution functions for colloid and bacterial fate and transport model parameters describing breakthrough curves (BTCs) obtained through porous media column studies, and is applied to data involving different ionic strength solutions to fit models of differing complexity. Our approach focuses on the simultaneous fitting of a number of BTCs representing different conditions, and it provides a measure of the goodness of model structure, namely Deviance Information Criteria (DIC). Comparison of DIC per model fit enables the evaluation of the significance of various processes through step-wise increases in complexity due to the addition of process model components. We use the method to investigate the transport of both flagellated and non-flagellated strains of Azotobacter vinelandii in a simulated porous media under three ionic strengths. Three different model structures are considered: one without a detachment process and with Langmuirian blocking function, one with detachment, and one with detachment and a second-order blocking function based on random sequential adsorption. First, the model was applied separately to each single BTC. Next, the model was applied comprehensively to the experiments under various ionic strengths, whereas some transport parameters including dispersivity, detachment coefficient, the fraction of cells undergoing irreversible attachment, and the coefficient of the second-order blocking term were assumed to be the same under different ionic strengths. In most cases, including detachment substantially improved the DIC as expected, whereas using the second-order blocking improved DIC for most of the cases when the method was applied to separate BTCs but not when the method was applied collectively to the three BTCs obtained under various ionic strengths. Also, comparing the outcomes of the separate applications of the parameter estimation algorithm versus the collective application indicates that the uncertainty associated with the estimated parameters is substantially smaller when the collective approach is used and also that the estimated parameters are more consistent with the expectations based on the underlying physical processes.


Assuntos
Bactérias , Modelos Teóricos , Teorema de Bayes , Concentração Osmolar , Porosidade
6.
J Contam Hydrol ; 149: 46-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584457

RESUMO

This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates is investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first-order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state.


Assuntos
Água Subterrânea/análise , Monitoramento Ambiental/métodos , Cinética
7.
Adv Water Resour ; 54: 11-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25821342

RESUMO

Groundwater age distributions are used to estimate the parameters of Fickian, and non-Fickian, effective models of solute transport. Based on the similarities between the transport and age equations, we develop a deconvolution based approach that describes transport between two monitoring wells. We show that the proposed method gives exact estimates of the travel time distribution between two wells when the domain is stationary and that the method still provides useful information on transport when the domain is non-stationary. The method is demonstrated using idealized uniform and layered 2-D aquifers. Homogeneous transport is determined exactly and non-Fickian transport in a layered aquifer was also approximated very well, even though this example problem is shown to be scale-dependent. This work introduces a method that addresses a significant limitation of tracer tests and non-Fickian transport modeling which is the difficulty in determining the effective parameters of the transport model.

8.
Water Resour Res ; 48(7): W07508, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24976651

RESUMO

We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model.

9.
Water Environ Res ; 83(4): 313-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21553587

RESUMO

In disinfection systems, incomplete penetration of chlorine into effluent wastewater particles can result in a residual population of viable microorganisms. In this work, a combined experimental and numerical approach was used to quantify inactivation of microorganisms in effluent particles and identify combinations of particle removal and chlorine dose that would result in a reduction of occluded microorganisms for six full-scale facilities in the United States with different nitrification levels. The results reveal that combined chlorine is more effective for inactivating occluded microorganisms than free chlorine; model calibration results suggest that free chlorine is less effective because it is more reactive. However, nitrified effluents appear to have lower effluent particle concentrations, and decreases in particle concentrations significantly reduce the chlorine required. Additionally, in disinfection systems that are designed and operated based on inactivation of indicator organisms, the chlorine dose may be insufficient to inactivate occluded pathogens to levels consistent with current regulations.


Assuntos
Desinfecção/métodos , Filtração/métodos , Modelos Teóricos , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Calibragem , Tamanho da Partícula
10.
J R Soc Interface ; 8(54): 1-15, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20829246

RESUMO

Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.


Assuntos
Bioengenharia/tendências , Conservação dos Recursos Naturais/tendências , Solo , Carbonato de Cálcio/química , Sequestro de Carbono , Conservação dos Recursos Naturais/métodos , Ecossistema , Microbiologia do Solo
11.
J Basic Microbiol ; 50(2): 160-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20082378

RESUMO

An aqueous mixture of goethite, quartz, and lead chloride (PbCl(2)) was treated with the sulfate-reducing bacterium, Desulfovibrio desulfuricans G20 (D. desulfuricans G20), in a medium specifically designed to assess metal toxicity. In the presence of 26 muM of soluble Pb, together with the goethite and quartz, D. desulfuricans G20 grew after a lag time of 5 days compared to 2 days in Pb-, goethite-, and quartz-free treatments. In the absence of goethite and quartz, however, with 26 microM soluble Pb, no measurable growth was observed. Results showed that D. desulfuricans G20 first removed Pb from solutions then growth began resulting in black precipitates of Pb and iron sulfides. Transmission electron microscopic analyses of thin sections of D. desulfuricans G20 treated with 10 microM PbCl(2) in goethite- and quartz-free treatment showed the presence of a dense deposit of lead sulfide precipitates both in the periplasm and cytoplasm. However, thin sections of D. desulfuricans G20 treated with goethite, quartz, and PbCl(2) (26 microM soluble Pb) showed the presence of a dense deposit of iron sulfide precipitates both in the periplasm and cytoplasm. Energy-dispersive X-ray spectroscopy, selected area electron diffraction patterns, or X-ray diffraction analyses confirmed the structure of precipitated Pb inside the cell as galena (PbS) in goethite- and quartz-free treatments, and iron sulfides in treatments with goethite, quartz, and PbCl(2). Overall results suggest that even at the same soluble Pb concentration (26 microM), in the presence of goethite and quartz, apparent Pb toxicity to D. desulfuricans G20 decreased significantly. Further, accumulation of lead/iron sulfides inside D. desulfuricans G20 cells depended on the presence of goethite and quartz.


Assuntos
Desulfovibrio desulfuricans/efeitos dos fármacos , Compostos de Ferro/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Quartzo/metabolismo , Citoplasma/química , Citoplasma/ultraestrutura , Desulfovibrio desulfuricans/crescimento & desenvolvimento , Desulfovibrio desulfuricans/metabolismo , Desulfovibrio desulfuricans/ultraestrutura , Ferro/análise , Chumbo/análise , Microscopia Eletrônica de Transmissão , Minerais , Periplasma/química , Periplasma/ultraestrutura , Espectrometria por Raios X , Sulfetos/análise
12.
J Contam Hydrol ; 112(1-4): 103-17, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20015573

RESUMO

A quasi-two-dimensional model is presented for simulating transport and transformation of contaminant species in river waters and sediments, taking into account the effect of both biotic and abiotic geochemical reactions on the contaminant fate and mobility. The model considers the downstream transport of dissolved and sediment-associated species, and the mass transfer with bed sediments due to erosion and resuspension, using linked advection-dispersion-reaction equations. The model also couples both equations to the reactive transport within bed sediment phases. This is done by the use of a set of vertical one-dimensional columns representing sediment layers that take into account the reactive transport of chemicals, burial, sorption/desorption to/from the solid phase, and the diffusive transport of aqueous species. Kinetically-controlled reversible solid-water mass exchange models are adopted to simulate interactions between suspended sediments and bulk water, as well as the mass exchange between bed sediments and pore water. An innovative multi-time step approach is used to model the fully kinetic nonlinear reaction terms using a non-iterative explicit method. This approach enables the model to handle fast and near-equilibrium reactions without a significant increase in computational burden. At the end, two demonstration cases are simulated using the model, including transport of a sorbing, non-reactive trace metal and nitrogen cycling, both in the Colusa Basin Drain in the Central Valley of California.


Assuntos
Sedimentos Geológicos/química , Modelos Biológicos , Modelos Químicos , Rios/química , Poluentes da Água/química , California , Mercúrio/química , Nitrogênio/metabolismo
14.
Environ Toxicol Chem ; 28(10): 2020-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19496634

RESUMO

Heavy metals can significantly affect the kinetics of substrate biodegradation and microbial growth, including lag times and specific growth rates. A model to describe microbial metabolic lag as a function of the history of substrate concentration has been previously described by Wood et al. (Water Resour Res 31:553-563) and Ginn (Water Resour Res 35:1395-1408). In the present study, this model is extended by including the effect of heavy metals on metabolic lag by developing an inhibitor-dependent functional to account for the metabolic state of the microorganisms. The concentration of the inhibiting metal is explicitly incorporated into the functional. The validity of the model is tested against experimental data on the effects of zinc on Pseudomonas species isolated from Lake Coeur d'Alene sediments, Idaho, U.S.A., as well as the effects of nickel or cobalt on a mixed microbial culture collected from the aeration tank of a wastewater treatment plant in Athens, Greece. The simulations demonstrate the ability to incorporate the effect of metals on metabolism through lag, yield coefficient, and specific growth rates. The model includes growth limitation due to insufficient transfer of oxygen into the growth medium.


Assuntos
Metais Pesados/toxicidade , Modelos Biológicos , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Acetatos/análise , Biodegradação Ambiental/efeitos dos fármacos , Sedimentos Geológicos/química , Cinética , Metais Pesados/química , Metais Pesados/metabolismo , Oxigênio/análise , Pseudomonas/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Fatores de Tempo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
15.
Ground Water ; 47(4): 547-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19245542

RESUMO

The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Movimentos da Água
16.
Risk Anal ; 29(2): 257-66, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19144071

RESUMO

The overall goal of the study reported herein was to use techniques in the field of risk assessment (specifically a state-space population dynamic model of disease transmission within recreational waters) to explore the relative significance of (1) active shedding of microorganisms from bathers themselves, and (2) the type and concentration of etiological agent on the observed heterogeneity of the incidence of illness in epidemiological studies that have been used to develop ambient water quality criteria. The etiological agent and corresponding dose ingested during recreational contact was found to significantly impact the observed incidence of illness in an epidemiological study conducted in recreational water. In addition, the observed incidence of illness was found not to necessarily reflect background concentrations of indicator organisms, but rather microorganisms shed during recreational contact. Future revisions to ambient water quality criteria should address the etiological agent, dose, and the significance of microbial shedding relative to background concentrations of pathogens and indicator organisms in addition to the incidence of illness and concentration of indicator organisms. Without a quantitative assessment of these additional variables, study findings may potentially be site specific and not representative of the health risks associated with specific indicator concentrations in all recreational waters.


Assuntos
Praias/normas , Medição de Risco/métodos , Microbiologia da Água/normas , Abastecimento de Água/normas , Algoritmos , Doenças Transmissíveis/epidemiologia , Monitoramento Ambiental/normas , Estudos Epidemiológicos , Monitoramento Epidemiológico , Humanos , Modelos Estatísticos , Ensaios Clínicos Controlados Aleatórios como Assunto , Água/análise
17.
Microb Ecol ; 58(1): 129-39, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18830662

RESUMO

The prokaryotic diversity associated with highly metal-contaminated sediment samples collected from the Coeur d'Alene River (CdAR) was investigated using a cultivation-independent approach. Bacterial community structure was studied by constructing an RNA polymerase beta subunit (rpoB) gene library. Phylogenetic analysis revealed that 75.8% of the rpoB clones were associated with beta-Proteobacteria while the remaining 24.2% were with gamma-Proteobacteria. All phylotypes showed close similarity to previously reported cultivable lineages from metal or organic contaminant-rich environments. In an archaeal 16S rRNA gene library, 70% of the clones were affiliated to Crenarchaeota, while 30% belonged to Euryarchaeota. Most of the Euryarchaeota sequences were related to acetoclastic lineages belonging to Methanosarcinales. A single phylotype within the Euryarchaeota showed no association with cultivable euryarchaeotal lineages and might represent novel taxon. Diversity indices demonstrated greater diversity of Bacteria compared to Archaea in CdAR sediments. Sediment characterization by the X-ray fluorescence spectroscopy revealed high amount of toxic metals. To our knowledge, this is the first culture-independent survey on the prokaryotic diversity present in mining-impacted sediments of CdAR.


Assuntos
Archaea/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Microbiologia da Água , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Biblioteca Gênica , Sedimentos Geológicos/análise , Idaho , Metais/análise , Mineração , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , Poluentes da Água/análise
18.
J Contam Hydrol ; 97(1-2): 55-66, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18304692

RESUMO

An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as those occurring in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data.


Assuntos
Clorobenzenos/química , Modelos Teóricos , Poluentes do Solo/química , Difusão , Tamanho da Partícula
19.
Water Res ; 41(10): 2189-201, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17389144

RESUMO

Occlusion of microorganisms in wastewater particles often governs the overall performance of a disinfection system, and the associated health risks of post-disinfected effluents. Little is currently known on the penetration of chemical oxidants into particles developed in wastewater treatment. In this work, a reactive transport model that incorporates intra- and extra-particle chemical decay, radial intra-particle diffusion, mass transfer resistance at particle surfaces, and non-linear reaction kinetics within a competitive multi-particle size aqueous environment, was used to analyze the penetration of ozone and chlorine into wastewater particles. Individual characteristics from two secondary wastewater treatment facilities were used in model calibration. Simulations revealed that significant ozone transport within particles greater than 6 microm required large initial concentrations to exhaust the preferential reaction with aqueous soluble matter. Chlorinated samples exhibited apparently slower reactions and thus deeper penetration (22-40 microm). Chlorine penetration was less sensitive to variations in the extra-particle reaction and disinfectant concentration than ozone. Model simulations that considered elevated initial concentrations of chemical disinfectants revealed that complete inactivation of all particle size domains was not possible with current disinfection practices (e.g., contact times). Reduction in the health risks associated with wastewater particles requires treatment that efficiently balances particle removal (filtration) and particle inactivation (disinfection).


Assuntos
Cloro/isolamento & purificação , Desinfecção/métodos , Ozônio/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Água/análise , Bactérias/isolamento & purificação , Difusão , Soluções , Propriedades de Superfície , Microbiologia da Água
20.
Math Biosci ; 208(1): 325-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17296208

RESUMO

Applied population dynamics modeling is relied upon with increasing frequency to quantify how human activities affect human and non-human populations. Current techniques include variously the population's spatial transport, age, size, and physiology, but typically not the life-histories of exposure to other important things occurring in the ambient environment, such as chemicals, heat, or radiation. Consequently, the effects of such 'abiotic' aspects of an ecosystem on populations are only currently addressed through individual-based modeling approaches that despite broad utility are limited in their applicability to realistic ecosystems [V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115 (1999) 129-148][1]. We describe a new category of population dynamics modeling, wherein population dynamical states of the biotic phases are structured on dose, and apply this framework to demonstrate how chemical species or other ambient aspects can be included in population dynamics in three separate examples involving growth suppression in fish, inactivation of microorganisms with ultraviolet irradiation, and metabolic lag in population growth. Dose-structuring is based on a kinematic approach that is a simple generalization of age-structuring, views the ecosystem as a multi-component mixture with reacting biotic/abiotic components. The resulting model framework accommodates (a) different memories of exposure as in recovery from toxic ambient conditions, (b) differentiation between exogenous and endogenous sources of variation in population response, and (c) quantification of acute or sub-acute effects on populations arising from life-history exposures to abiotic species. Classical models do not easily address the very important fact that organisms differ and have different experiences over their life cycle. The dose structuring is one approach to incorporate some of these elements into the existing structures of the classical models, while retaining many of the features (and other limitations) of classical models.


Assuntos
Ecossistema , Modelos Biológicos , Algoritmos , Animais , Biodegradação Ambiental , Demografia , Desinfecção/métodos , Humanos , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Salmão/crescimento & desenvolvimento , Processos Estocásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...