Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17409, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833487

RESUMO

When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally and theoretically investigate the transient recoil dynamics of non-spherical particles, i.e., colloidal dumbbells. In addition to a translational recoil of the dumbbells, we also find a pronounced angular reorientation which results from the relaxation of the surrounding fluid. Our findings are in good agreement with a Langevin description based on the symmetries of a director (dumbbell) as well as a microscopic bath-rod model. Remarkably, we find an instability with amplified fluctuations when the dumbbell is oriented perpendicular to the direction of driving. Our results demonstrate the complex behavior of non-spherical objects within a relaxing environment which are of immediate interest for the motion of externally but also self-driven asymmetric objects in viscoelastic fluids.

2.
J Chem Phys ; 158(2): 024901, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641417

RESUMO

The motion of a colloidal probe in a viscoelastic fluid is described by friction or mobility, depending on whether the probe is moving with a velocity or feeling a force. While the Einstein relation describes an inverse relationship valid for Newtonian solvents, both concepts are generalized to time-dependent memory kernels in viscoelastic fluids. We theoretically and experimentally investigate their relation by considering two observables: the recoil after releasing a probe that was moved through the fluid and the equilibrium mean squared displacement (MSD). Applying concepts of linear response theory, we generalize Einstein's relation and, thereby, relate recoil and MSD, which both provide access to the mobility kernel. With increasing concentration, however, MSD and recoil show distinct behaviors, rooted in different behaviors of the two kernels. Using two theoretical models, a linear two-bath particle model, and hard spheres treated by mode coupling theory, we find a Volterra relation between the two kernels, explaining differing timescales in friction and mobility kernels under variation of concentration.


Assuntos
Modelos Teóricos , Fricção , Movimento (Física)
3.
Phys Rev Lett ; 128(2): 028001, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089774

RESUMO

We investigate the hopping dynamics of a colloidal particle across a potential barrier and within a viscoelastic, i.e., non-Markovian, bath and report two clearly separated timescales in the corresponding waiting time distributions. While the longer timescale exponentially depends on the barrier height, the shorter one is similar to the relaxation time of the fluid. This short timescale is a signature of the storage and release of elastic energy inside the bath that strongly increases the hopping rate. Our results are in excellent agreement with numerical simulations of a simple Maxwell model.

4.
J Chem Phys ; 154(18): 184904, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241016

RESUMO

We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at larger velocities is in qualitative agreement with macroscopic rheological experiments. The second process, observed at Weissenberg numbers as small as a few percent, appears to have no analog in macro-rheological findings. A simple model introduced earlier captured the observed behavior and implied that the two shear thinning processes correspond to two different length scales in the fluid. This model also reproduces oscillations, which have been observed in this system previously. While the system under macro-shear seems to be near equilibrium for shear rates in the regime of the intermediate Newtonian-like plateau, the one under micro-shear is thus still far from it. The analysis suggests the existence of a length scale of a few micrometres, the nature of which remains elusive.

5.
Soft Matter ; 17(10): 2737-2741, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33533371

RESUMO

We study the temperature-dependence of critical Casimir interactions in a critical micellar solution of the nonionic surfactant C12E5 dissolved in water. Experimentally, this is achieved with total internal reflection microscopy (TIRM) which measures the interaction between a single particle and a flat wall. For comparison, we also studied the pair interactions of a two dimensional layer of colloidal particles in the identical micellar system which yields good agreement with the TIRM results. Although, at the surfactant concentration considered here, the fluid forms a dynamical network of wormlike micelles whose structure is considerably more complex than that of simple critical molecular fluids, the temperature-dependence of the measured interactions is - for surface-to-surface distances above 160 nm - in excellent quantitative agreement with theory. Below 160 nm, deviations arise which we attribute to the adsorption of micelles to the interacting surfaces.

6.
J Phys Chem Lett ; 11(18): 7730-7738, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841035

RESUMO

Cryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, the central aspects of cryopreservation, such as the cell's physicochemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing-medium phase diagram. We extract the freezing-medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells' local environment over time: the interaction with the moving ice front and the interaction with the vitreous moving front, a term we introduce here. Our correlative strategy may be applied to cells relevant to clinical research and practice and may help in the design of new cryoprotective media based on local physicochemical cues.


Assuntos
Varredura Diferencial de Calorimetria , Criopreservação , Crioprotetores/química , Congelamento , Saccharomyces cerevisiae/citologia , Humanos
7.
Phys Rev Lett ; 123(24): 248004, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922864

RESUMO

We study experimentally the response of a dense sediment of Brownian particles to self-propulsion. We observe that the ergodic supercooled liquid relaxation is monotonically enhanced by activity. By contrast the nonergodic glass shows an order of magnitude slowdown at low activities with respect to the passive case, followed by fluidization at higher activities. Our results contrast with theoretical predictions of the ergodic approach to glass transition, summing up to a shift of the glass line. We propose that nonmonotonicity is due to competing effects of activity: (i) extra energy that helps breaking cages; (ii) directionality that hinders cage exploration. We call it "deadlock from the emergence of active directionality." It suggests further theoretical works should include thermal motion.

8.
Phys Rev E ; 100(6-1): 062603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962398

RESUMO

We study experimentally a sediment of self-propelled Brownian particles with densities ranging from dilute to ergodic supercooled to nonergodic glass to nonergodic polycrystal. In a companion paper, we observe a nonmonotonic response to activity of relaxation of the nonergodic glass state: a dramatic slowdown when particles become weakly self-propelled, followed by a speedup at higher activities. Here we map ergodic supercooled states to standard passive glassy physics, provided a monotonic shift of the glass packing fraction and the replacement of the ambient temperature by the effective temperature. However, we show that this mapping fails beyond glass transition. This failure is responsible for the nonmonotonic response. Furthermore, we generalize our finding by examining the dynamical response of another class of nonergodic systems: polycrystals. We observe the same nonmonotonic response to activity. To explain this phenomenon, we measure the size of domains where particles move in the same direction. This size also shows a nonmonotonic response, with small lengths corresponding to slow relaxation. This suggests that the failure of the mapping of nonergodic active states to a passive situation is general and is linked to anisotropic relaxation mechanisms specific to active matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...